File: logseries.rb

package info (click to toggle)
ruby-statistics 2.1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 224 kB
  • sloc: ruby: 989; sh: 4; makefile: 4
file content (51 lines) | stat: -rw-r--r-- 1,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
module Statistics
  module Distribution
    class LogSeries
      def self.density_function(k, p)
        return if k <= 0
        k = k.to_i

        left = (-1.0 / Math.log(1.0 - p))
        right = (p ** k).to_f

        left * right / k
      end

      def self.cumulative_function(k, p)
        return if k <= 0

        # Sadly, the incomplete beta function is converging
        # too fast to zero and breaking the calculation on logs.
        # So, we default to the basic definition of the CDF which is
        # the integral (-Inf, K) of the PDF, with P(X <= x) which can
        # be solved as a summation of all PDFs from 1 to K. Note that the summation approach
        # only applies to discrete distributions.
        #
        # right = Math.incomplete_beta_function(p, (k + 1).floor, 0) / Math.log(1.0 - p)
        # 1.0 + right

        result = 0.0
        1.upto(k) do |number|
          result += self.density_function(number, p)
        end

        result
      end

      def self.mode
        1.0
      end

      def self.mean(p)
        (-1.0 / Math.log(1.0 - p)) * (p / (1.0 - p))
      end

      def self.variance(p)
        up = p + Math.log(1.0 - p)
        down = ((1.0 - p) ** 2) * (Math.log(1.0 - p) ** 2)

        (-1.0 * p) * (up / down.to_f)
      end
    end
  end
end