File: function.c

package info (click to toggle)
ruby-tioga 1.19.1-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,812 kB
  • sloc: ansic: 39,883; ruby: 17,312; sh: 79; makefile: 32
file content (1758 lines) | stat: -rw-r--r-- 50,054 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
/**********************************************************************

   Function.c
 
   An object embedding two Dvectors for the ease of manipulation as
   a function. 
   
   Copyright (C) 2006,2010  Vincent Fourmond

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Library Public License as published
   by the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Library General Public License for more details.
   
   You should have received a copy of the GNU Library General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
   
**********************************************************************/

#include <namespace.h>
#include <ruby.h>


#include <math.h>

/* Private include files */
#include "dvector.h"
#include "symbols.c"

/* compiler-dependent defintions, such as is_okay_number */
#include <defs.h>
/* End of private files */

/* the class we're defining */
static VALUE cFunction;
static VALUE cDvector;

/* ID used by different functions */
static ID idSize;
static ID idSetDirty;
static ID idDirty;
static ID idSort;
static ID idNew;

/* a few macros to work with Dvectors */
#define IS_A_DVECTOR(x) RTEST(rb_obj_is_kind_of(x, cDvector))

/* returns the size of a Dvector object */
#define DVECTOR_SIZE(x) (NUM2LONG(rb_funcall(x, idSize,0)))

#define DVECTOR_IS_DIRTY(x) (RTEST(rb_funcall(x, idDirty,0)))
#define DVECTOR_CLEAR(x) (rb_funcall(x, idSetDirty,1, Qfalse))
#define NUMERIC(x) (rb_type(x) == T_FIXNUM || \
rb_type(x) == T_BIGNUM)

#define X_VAL "@x_val"
#define Y_VAL "@y_val"
#define SPLINE_CACHE "@spline_cache"



/* basic functions for accessing the objects */


inline 
/* 
   The X vector.
*/
static VALUE get_x_vector(VALUE self) 
{
  return rb_iv_get(self, X_VAL);
}

inline 
static void set_x_vector(VALUE self, VALUE vector) 
{
  rb_iv_set(self, X_VAL, vector);
}

inline 
/* 
   The Y vector.
*/
static VALUE get_y_vector(VALUE self) 
{
  return rb_iv_get(self, Y_VAL);
}

inline 
static void set_y_vector(VALUE self, VALUE vector) 
{
  rb_iv_set(self, Y_VAL, vector);
}


inline static VALUE get_spline_vector(VALUE self) 
{
  return rb_iv_get(self, SPLINE_CACHE);
}

inline static void set_spline_vector(VALUE self, VALUE vector) 
{
  rb_iv_set(self, SPLINE_CACHE, vector);
}


/*
  Checks that self is a Function, that it has X and Y Dvectors and that
  they both have the same size. In that case, the size is returned.
*/
static long function_sanity_check(VALUE self)
{
  if(RTEST(rb_obj_is_kind_of(self, cFunction)))
  {
    VALUE x = get_x_vector(self);
    VALUE y = get_y_vector(self);
    if(IS_A_DVECTOR(x)
       && IS_A_DVECTOR(y))
      {
	long size = DVECTOR_SIZE(x);
	if( size== DVECTOR_SIZE(y))
	  return size;
	else
	  {
	    rb_raise(rb_eRuntimeError, "X and Y vectors must have the"
		     " same size");
	    return -1;
	  }
      }
    else 
      {
	rb_raise(rb_eRuntimeError, "X and Y must be vectors");
	return -1;
      }
  }
  else 
    {
      rb_raise(rb_eRuntimeError, "self is no Function");
      return -1;
    }
}


/*
  call-seq:
    Function.new(x,y)

    Creates a Function object with given +x+ and +y+ values.
 */
static VALUE function_initialize(VALUE self, VALUE x, VALUE y)
{
  if(IS_A_DVECTOR(x) && IS_A_DVECTOR(y)) 
    {
      if(DVECTOR_SIZE(x) == DVECTOR_SIZE(y)) {
	set_x_vector(self, x);
	set_y_vector(self, y);
	/* fine, this could have been written in pure Ruby...*/
	set_spline_vector(self,Qnil);
	/* We initialize the @spline_cache var */
      }
      else
	rb_raise(rb_eArgError,"both vectors must have the same size");
    }
  else 
    rb_raise(rb_eArgError,"both arguments must be Dvector");
  return self;
}

static VALUE Function_Create(VALUE x, VALUE y)
{
  return rb_funcall(cFunction, idNew, 2, x, y);
}

static int dvector_is_sorted(VALUE dvector)
{
  long size;
  const double * x_data;
  double prev;
  if(! IS_A_DVECTOR(dvector))
    rb_raise(rb_eArgError, "should take a Dvector as argument");
  else 
    {
      x_data = Dvector_Data_for_Read(dvector, &size);
      prev = x_data[0];
      while((--size) && prev <= *(++x_data))
	prev = *x_data;
      return (size == 0);
    }
  return 0;
}
  
/*
  Checks if the X values of the Function are sorted.
*/
static VALUE function_is_sorted(VALUE self)
{
  if(dvector_is_sorted(get_x_vector(self)))
    return Qtrue;
  else
    return Qfalse;
}

static VALUE function_sort(VALUE self);

/* small macros to make the code a little more clear */
#define FIXED_BOUNDARY(n, slope) (3.0/(x_vals[n+1] - x_vals[n])) *\
((y_vals[n+1] - y_vals[n])/(x_vals[n+1] - x_vals[n]) - slope)


/* This code is greatly inspired by what can be found in the book
   Numerical Recipes in C. It fills the y2_vals values with computed
   second derivatives. left_der and right_der are boundary conditions.
   If not finite, use natural spline.
*/
static void function_fill_second_derivatives(long nb_points,
					     const double *x_vals,
					     const double *y_vals,
					     double * y2_vals,
					     double left_slope,
					     double right_slope)
{
   if(nb_points < 1)
     return;
   double *tmp = (double *)ALLOC_N(double, nb_points);
   long i;
   double piv;
   double ratio;

   if(is_okay_number(left_slope)) /* slope is defined */
     {
       y2_vals[0] = -0.5;
       tmp[0] = FIXED_BOUNDARY(0,left_slope);
     }
   else
     y2_vals[0] = tmp[0] = 0; /* natural spline */
   
   /* forward decomposition */
   for(i = 1; i < nb_points - 1; i++) 
     {
       ratio = (x_vals[i] - x_vals[i-1])/(x_vals[i+1] - x_vals[i-1]);
       piv = 1/(ratio * y2_vals[i-1] + 2.0);
       y2_vals[i] = (ratio - 1.0) * piv;
       tmp[i] = (6.0 * 
		 ((y_vals[i+1] - y_vals[i]  )/
		  (x_vals[i+1] - x_vals[i]  ) - 
		  (y_vals[i]   - y_vals[i-1])/
		  (x_vals[i]   - x_vals[i-1])
		  )/
		 (x_vals[i+1]  - x_vals[i-1]) 
		 - ratio * tmp[i-1]) * piv;
     }
   /* then, the right boundary condition */
   if(is_okay_number(right_slope)) /* slope is defined */
     {
       y2_vals[nb_points - 1] = 0.5;
       tmp[nb_points - 1] = - FIXED_BOUNDARY(nb_points - 2,right_slope);
     }
   else
     y2_vals[nb_points - 1] = tmp[nb_points - 1] = 0; /* natural spline */

   /* then, backward substitution */
   y2_vals[nb_points - 1] = (tmp[nb_points - 1] - 
			     y2_vals[nb_points - 1] * tmp[nb_points - 2])/
     (y2_vals[nb_points - 1] * y2_vals[nb_points - 2] + 1.0);
   for(i = nb_points - 2; i >= 0; i--)
     y2_vals[i] = y2_vals[i]*y2_vals[i+1] + tmp[i];
   /* done, we free the allocated buffer */
   xfree(tmp);
}

/* 
   Computes spline data and caches it inside the object. Both X and Y vectors
   are cleared (see Dvector#clear) to make sure the cache is kept up-to-date.
   If the function is not sorted, sorts it.
*/
static VALUE function_compute_spline_data(VALUE self)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache = get_spline_vector(self);
  long size = DVECTOR_SIZE(x_vec);

  if(DVECTOR_SIZE(y_vec) != size)
    rb_raise(rb_eRuntimeError, 
	     "x and y should have the same size !");
  if(! IS_A_DVECTOR(cache))    /* create it -- and silently ignores
				  its previous values */
      cache = rb_funcall(cDvector, idNew,
			 1, LONG2NUM(size));
  if(DVECTOR_SIZE(cache) != size) /* switch to the required size for cache */
    Dvector_Data_Resize(cache, size);

  /* we make sure that the X values are sorted */
  if(! RTEST(function_is_sorted(self)))
     function_sort(self);
  
  double * x, *y, *spline;
  x = Dvector_Data_for_Read(x_vec, NULL);
  y = Dvector_Data_for_Read(y_vec, NULL);
  spline = Dvector_Data_for_Write(cache, NULL);

  function_fill_second_derivatives(size, x, y, spline,1.0/0.0, 1.0/0.0);
  set_spline_vector(self, cache);

  /* now, we clear both X and Y */
  DVECTOR_CLEAR(x_vec);
  DVECTOR_CLEAR(y_vec);
  return self;
}

/* Computes the results of spline interpolation for the given set
   of x points. It assumes that x points are sorted and within range ...
*/
static void function_compute_spline_interpolation(long dat_size,
						  const double * x_dat,
						  const double * y_dat,
						  const double * y2_dat,
						  long dest_size,
						  const double * x,
						  double * y)
{
  long low,hi,mid;
  double h;
  double a,b;
  low = 0;
  hi = dat_size - 1;
  if(dest_size <= 1) /* nothing interesting to be done here...*/
    return;
  if(x[0] < x_dat[0] || x[dest_size - 1] > x_dat[dat_size - 1])
    rb_raise(rb_eRuntimeError, "x range should be within x_dat range");
  /* first, we seek the first point by bisection */
  while(low - hi >  1) 
    {
      mid = (low + hi) >> 1;
      if(x[0] > x_dat[mid])
	low = mid;
      else
	hi = mid;
    }
  
  for(hi = 0; hi < dest_size; hi++)
    {
      while(x_dat[low + 1] < x[hi] && low < dat_size - 1)
	low++; /* seek forward - shouldn't be too long ? */
      if(hi && x[hi] < x[hi - 1])
	rb_raise(rb_eArgError, 
		 "X values should be sorted");
      h = x_dat[low + 1] - x_dat[low];
      /* should hopefully not be zero */
      if(h <= 0.0)
	rb_raise(rb_eRuntimeError, 
		 "x_dat must be strictly growing");
      a = (x_dat[low + 1] - x[hi])/h;
      b = - (x_dat[low] - x[hi])/h;
      /* spline evaluation */
      y[hi] = a * y_dat[low] +
	b * y_dat[low + 1] +
	( (a*a*a - a) * y2_dat[low] +
	  (b*b*b - b) * y2_dat[low + 1]
	  ) * (h * h)/6.0;
    }
}

/* makes sure that the spline data is present and up-to-date, refreshing
   it if necessary 
*/
static void function_ensure_spline_data_present(VALUE self)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache = get_spline_vector(self);
  long dat_size = function_sanity_check(self);

  if(! IS_A_DVECTOR(cache) || 
     DVECTOR_IS_DIRTY(x_vec) || 
     DVECTOR_IS_DIRTY(y_vec) || 
     DVECTOR_SIZE(cache) == dat_size
     )
    function_compute_spline_data(self);
}

/* Interpolates the value of the function at the points given.
   Returns a brand new Dvector. The X values must be sorted ! 
 */
static VALUE function_compute_spline(VALUE self, VALUE x_values)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache;
  VALUE ret_val;
  long dat_size = function_sanity_check(self);
  long size = DVECTOR_SIZE(x_values);
  
  function_ensure_spline_data_present(self);

  cache = get_spline_vector(self);

  ret_val = rb_funcall(cDvector, rb_intern("new"),
		       1, LONG2NUM(size));
  double * x_dat = Dvector_Data_for_Read(x_vec,NULL);
  double * y_dat = Dvector_Data_for_Read(y_vec,NULL);
  double * spline = Dvector_Data_for_Read(cache,NULL);
  double * x = Dvector_Data_for_Read(x_values,NULL);
  double * y = Dvector_Data_for_Write(ret_val,NULL);
  
  function_compute_spline_interpolation(dat_size, x_dat,
					y_dat, spline,
					size, x, y);
  return ret_val;
}

/*
  Returns an interpolant that can be fed to 
  Special_Paths#append_interpolant_to_path
  to make nice splines. 

  Can be used this way:

   f = Function.new(x,y)
   t.append_interpolant_to_path(f.make_interpolant)
   t.stroke
*/
static VALUE function_make_interpolant(VALUE self)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache;
  VALUE a_vec,b_vec,c_vec;
  VALUE ret_val;
  double *x, *y, *a, *b, *c, *y2;
  double delta_x;
  long size = function_sanity_check(self);
  long i;
  
  function_ensure_spline_data_present(self);

  cache = get_spline_vector(self);
  x = Dvector_Data_for_Read(x_vec,NULL);
  y = Dvector_Data_for_Read(y_vec,NULL);
  y2 = Dvector_Data_for_Read(cache,NULL);

  a_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  a = Dvector_Data_for_Write(a_vec, NULL);
  b_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  b = Dvector_Data_for_Write(b_vec, NULL);
  c_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  c = Dvector_Data_for_Write(c_vec, NULL);

  /* from my computations, the formula is the following:
     A = (y_2n+1 - y_2n)/(6 * delta_x)
     B = 0.5 * y_2n
     C = (y_n+1 - y_n)/delta_x - (2 * y_2n + y_2n+1) * delta_x/6
  */

  for(i = 0; i < size - 1; i++)
    {
      delta_x = x[i+1] - x[i];
      a[i] = (y2[i+1] - y2[i]) / (6.0 * delta_x);
      b[i] = 0.5 * y2[i];
      c[i] = (y[i+1] - y[i])/delta_x - 
	(2 * y2[i] + y2[i+1]) * (delta_x / 6.0);
    }
  a[i] = b[i] = c[i] = 0.0;
  ret_val = rb_ary_new();
  rb_ary_push(ret_val, x_vec);
  rb_ary_push(ret_val, y_vec);
  rb_ary_push(ret_val, a_vec);
  rb_ary_push(ret_val, b_vec);
  rb_ary_push(ret_val, c_vec);

  return ret_val;
}
						     

/* the function fort joint sorting...*/
INTERN void joint_quicksort(double *const x_values, double * const y_values,
			    size_t total_elems);

/* Dvector's lock */
#define DVEC_TMPLOCK  FL_USER1

/* call-seq:
     Function.joint_sort(x,y)

   Sorts +x+, while ensuring that the corresponding +y+ values
   keep matching. Should be pretty fast, as it is derived from 
   glibc's quicksort.

    a = Dvector[3,2,1]
    b = a * 2                 -> [6,4,2]
    Function.joint_sort(a,b)  -> [[1,2,3], [2,4,6]]
*/

static VALUE function_joint_sort(VALUE self, VALUE x, VALUE y)
{
  long x_len, y_len;
  double * x_values = Dvector_Data_for_Write(x, &x_len);
  double * y_values = Dvector_Data_for_Write(y, &y_len);
  if(x_len != y_len)
    rb_raise(rb_eArgError,"both vectors must have the same size");
  else 
    {
      /* we temporarily freeze both Dvectors before sorting */
      FL_SET(x, DVEC_TMPLOCK);
      FL_SET(y, DVEC_TMPLOCK);
      joint_quicksort(x_values, y_values, (size_t) x_len);
      /* and unfreeze them */
      FL_UNSET(x, DVEC_TMPLOCK);
      FL_UNSET(y, DVEC_TMPLOCK);
    }
  /* we return the array of both Dvectors */
  return rb_ary_new3(2,x,y); 
}


/* call-seq:
    f.each do |x,y| _code_ end
    
   Iterates over all the points in the Function, yielding X and Y for
   each point.
*/
static VALUE function_each(VALUE self) /* :yields: x,y */
{

  long x_len, y_len;
  VALUE x = get_x_vector(self);
  VALUE y = get_y_vector(self);
  double * x_values = Dvector_Data_for_Write(x, &x_len);
  double * y_values = Dvector_Data_for_Write(y, &y_len);
  if(x_len != y_len)
    rb_raise(rb_eRuntimeError,"X and Y must have the same size");
  else 
    {
      /* we temporarily freeze both Dvectors during iteration */
      FL_SET(x, DVEC_TMPLOCK);
      FL_SET(y, DVEC_TMPLOCK);
      while(x_len--)
	{
	  VALUE flt_x = rb_float_new(*x_values++);
	  VALUE flt_y = rb_float_new(*y_values++);
	  rb_yield_values(2, flt_x, flt_y);
	}
      /* and unfreeze them */
      FL_UNSET(x, DVEC_TMPLOCK);
      FL_UNSET(y, DVEC_TMPLOCK);
    }
  return self; /* nothing interesting */
  
}

/* 
   Makes sure the function is sorted.
*/
static VALUE function_ensure_sorted(VALUE self)
{
  if(!RTEST(function_is_sorted(self)))
    function_sort(self);
  return self;
}



/* 
   call-seq:
     interpolate(x_values)
     interpolate(a_number)

   Computes interpolated values of the data contained in +f+ and 
   returns a Function object holding both +x_values+ and the computed
   Y values. +x_values+ will be sorted if necessary.

   With the second form, specify only the number of points, and
   the function will construct the appropriate vector with equally spaced
   points within the function range.
*/
static VALUE function_interpolate(VALUE self, VALUE x_values)
{
  if(NUMERIC(x_values))
    {
      /* we're in the second case, although I sincerely doubt it would
	 come useful 
      */
      long size,i;
      /* we make sure the function is sorted */
      function_ensure_sorted(self);
      double * data;
      double x_min;
      double x_max;
      data = Dvector_Data_for_Read(get_x_vector(self), &size);
      x_min = *data;
      x_max = *(data + size -1);
      x_values = rb_funcall(cDvector, idNew, 1, x_values);
      data = Dvector_Data_for_Write(x_values, &size);
      for(i = 0;i < size; i++)
	data[i] = x_min + ((x_max - x_min)/((double) (size-1))) * i;
    }
  if(! IS_A_DVECTOR(x_values))
    rb_raise(rb_eArgError, "x_values should be a Dvector or a number");
  else 
    {
      /* sort x_values */
      if(! dvector_is_sorted(x_values))
	rb_funcall(x_values, idSort,0);
      VALUE y_values = function_compute_spline(self, x_values);
      return rb_funcall(cFunction, idNew, 2, x_values, y_values);
    }
  return Qnil;
}



/*
  Strips all the points containing NaN values from the function, and
  returns the number of points stripped.
*/
static VALUE function_strip_nan(VALUE self)
{
  long size = function_sanity_check(self);
  long nb_stripped = 0;
  long i;

  double *x = Dvector_Data_for_Write(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Write(get_y_vector(self),NULL);
  for( i = 0; i < size; i++)
    {
      if(isnan(x[i]) || isnan(y[i]))
	nb_stripped ++;
      else
	{
	  x[i - nb_stripped] = x[i];
	  y[i - nb_stripped] = y[i];
	}
    }
  if(nb_stripped)
    {
      Dvector_Data_Resize(get_x_vector(self), size - nb_stripped);
      Dvector_Data_Resize(get_y_vector(self), size - nb_stripped);
    }
  return INT2NUM(nb_stripped);
}

/*
  Splits the function into strictly monotonic sub-functions.
  Returns the array of the subfunctions. The returned values are
  necessarily new values.
*/
static VALUE function_split_monotonic(VALUE self)
{
  VALUE ret = rb_ary_new();
  VALUE cur_x = Dvector_Create();
  VALUE cur_y = Dvector_Create();

  long size = function_sanity_check(self);
  long i;
  if(size < 2)
    rb_raise(rb_eRuntimeError, "Function needs to have at least 2 points");

  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);

  double last_x;
  double direction; /* -1 if down, +1 if up, so that the product of 
		       (x - last_x) with direction should always be positive
		    */
  VALUE f;
		     
		       
  /* bootstrap */
  if(x[1] > x[0])
    direction = 1;
  else
    direction = -1;
  last_x = x[1];
  for(i = 0; i < 2; i++)
    {
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
    }

  for(i = 2; i < size; i++) 
    {
      if(direction * (x[i] - last_x) <= 0) 
	{
	  /* we need to add a new set of Dvectors */
	  f = Function_Create(cur_x, cur_y);
	  rb_ary_push(ret, f);
	  cur_x = Dvector_Create();
	  cur_y = Dvector_Create();
	  /* We don't store the previous point if 
	   the X value is the same*/
	  if(x[i] != last_x) 
	    {
	      Dvector_Push_Double(cur_x, x[i-1]);
	      Dvector_Push_Double(cur_y, y[i-1]);
	    }
	  direction *= -1;
	}
      /* store the current point */
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
      last_x = x[i];
    }
  f = Function_Create(cur_x, cur_y);
  rb_ary_push(ret, f);
  return ret;
}


/*
  Splits the function on NaN values for x, y or xy, depending on
  whether _sym_ is +:x+, +:y+ or +:xy+ (or, as a matter of fact,
  anything else than +:x+ or +:y+).

  This returns an array of new Function objects.

  This function will return empty Function objects between consecutive
  NaN values.
*/
static VALUE function_split_on_nan(VALUE self, VALUE sym)
{
  VALUE ret = rb_ary_new();
  VALUE cur_x = Dvector_Create();
  VALUE cur_y = Dvector_Create();
  int on_x = 1;
  int on_y = 1;
  long size = function_sanity_check(self);
  long cur_size = 0;
  long i;
  if(size < 2)
    rb_raise(rb_eRuntimeError, "Function needs to have at least 2 points");

  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);

  VALUE f;
  
  if(sym == ID2SYM(rb_intern("x")))
    on_y = 0;
  else if(sym == ID2SYM(rb_intern("y")))
    on_x = 0;


  for(i = 0; i < size; i++) {
    if((on_x && isnan(x[i])) ||
       (on_y && isnan(y[i]))) {
      /* We split */
      f = Function_Create(cur_x, cur_y);
      rb_ary_push(ret, f);
      cur_x = Dvector_Create();
      cur_y = Dvector_Create();
    }
    else {
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
    }
  }
  f = Function_Create(cur_x, cur_y);
  rb_ary_push(ret, f);
  return ret;
}


/*
  Sorts the X values while keeping the matching Y values. 
*/
static VALUE function_sort(VALUE self)
{
  return function_joint_sort(self,get_x_vector(self), get_y_vector(self));
}

/*
  Returns a Dvector with two elements: the X and Y values of the
  point at the given index.
*/
static VALUE function_point(VALUE self, VALUE index)
{
  if(! NUMERIC(index))
    rb_raise(rb_eArgError, "index has to be numeric");
  else
    {
      long i = NUM2LONG(index);
      long size = function_sanity_check(self);
      if(size > 0 && i < size)
	{
	  VALUE point = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
	  double * dat = Dvector_Data_for_Write(point, NULL);
	  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
	  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
	  dat[0] = x[i];
	  dat[1] = y[i];
	  return point;
	}
      else
	return Qnil;
    }
  return Qnil;
}

static void init_IDs()
{
  idSize  = rb_intern("size");
  idSetDirty = rb_intern("dirty=");
  idDirty = rb_intern("dirty?");
  idSort = rb_intern("sort");
  idNew = rb_intern("new");
}


/* a smaller helper for the following function */
#define DISTANCE(x,y) (((x) - xpoint) * ((x) - xpoint) /xscale/xscale \
+ ((y) - ypoint) * ((y) - ypoint) /yscale/yscale)

/*
  Returns the distance of a point to the function, computed by the minimum
  of ((x - xpoint)/xscale)**2 + ((y - ypoint)/yscale)**2. If index
  is not NULL, it receives the index of the point of minimum distance.
*/
static double private_function_distance(VALUE self, 
					double xpoint, double ypoint,
					double xscale, double yscale,
					long * dest_index)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  double min = DISTANCE(x[0],y[0]);
  double cur;
  long index = 0;
  long i;
  for(i = 1; i < size; i++)
    {
      cur = DISTANCE(x[i], y[i]);
      if(cur < min)
	{
	  index = i;
	  min = cur;
	}
    }
  if(dest_index)
    *dest_index = index;
  return sqrt(min);
}

/*
  call-seq:
    f.distance(x,y) -> a_number
    f.distance(x,y, xscale, yscale) -> a_number
  
  Returns the distance of the function to the given point. Optionnal
  xscale and yscale says by how much we should divide the x and y
  coordinates before computing the distance. Use it if the distance is not
  homogeneous.
*/

static VALUE function_distance(int argc, VALUE *argv, VALUE self)
{
  switch(argc)
    {
    case 2:
      return rb_float_new(private_function_distance(self, 
						    NUM2DBL(argv[0]),
						    NUM2DBL(argv[1]),
						    1.0,1.0,NULL));
    case 4:
      return rb_float_new(private_function_distance(self, 
						    NUM2DBL(argv[0]),
						    NUM2DBL(argv[1]),
						    NUM2DBL(argv[2]),
						    NUM2DBL(argv[3]),
						    NULL));
    default:
      rb_raise(rb_eArgError, "distance should have 2 or 4 parameters");
    }
  return Qnil;
}


/*
  Code for integration.
*/
static double private_function_integrate(VALUE self, long start, long end)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  long i = start;
  double val = 0;
  if(end >= size)
    end = size - 1;
  if(start < 0)
    start = 0;
  while(i < (end))
    {
      val += (y[i] + y[i+1]) * (x[i+1] - x[i]) * 0.5;
      i++;
    }
  return val;
}

/*
  :call-seq:
    f.integrate()  -> value
    f.integrate(start_index, end_index) -> value

  Returns the value of the integral of the function between the
  two indexes given, or over the whole function if no indexes are
  specified.
*/
static VALUE function_integrate(int argc, VALUE *argv, VALUE self)
{
  long start,end;
  switch(argc) 
    {
    case 0:
      start = 0;
      end = function_sanity_check(self) - 1; 
      break;
    case 2:
      start = NUM2LONG(argv[0]);
      end = NUM2LONG(argv[1]);
      break;
    default:
      rb_raise(rb_eArgError, "integrate should have 0 or 2 parameters");
    }
  return rb_float_new(private_function_integrate(self,start,end));
}

/*
  Computes the primitive of the Function (whose value for the first point is 0)
  and returns it as a new Function.
  The newly created function shares the X vector with the previous one.
*/
static VALUE function_primitive(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE primitive = Dvector_Create();
  long i = 0;
  double val = 0;
  while(i < (size - 1))
    {
      Dvector_Push_Double(primitive, val);
      val += (y[i] + y[i+1]) * (x[i+1] - x[i]) * 0.5;
      i++;
    }
  Dvector_Push_Double(primitive, val);
  return Function_Create(get_x_vector(self), primitive);
}

/*
  Computes the derivative of the Function and returns it as a new Function.
  The newly created function shares the X vector with the previous one.

  WARNING: this is a very naive 3-points algorithm; you should
  consider using diff_5p
*/
static VALUE function_derivative(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  /* First value */
  Dvector_Push_Double(derivative, (y[i+1] - y[i]) /(x[i+1] - x[i]));
  i++;
  while(i < (size - 1))
    {
      Dvector_Push_Double(derivative, 
			  .5 * (
				(y[i+1] - y[i]) /(x[i+1] - x[i]) + 
				(y[i] - y[i-1]) /(x[i] - x[i-1])
				));
      i++;
    }
  Dvector_Push_Double(derivative, (y[i] - y[i-1]) /(x[i] - x[i-1]));
  return Function_Create(get_x_vector(self), derivative);
}

/*
  Computes a 4th order accurate derivative of the Function.

  This function *requires* that there are at the very least 5 data
  points !
*/
static VALUE function_diff_5p(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  double delta_1, delta_2, delta_3, delta_4;
  double alpha_1, alpha_2, alpha_3, alpha_4;
  double v0,v1,v2,v3,v4;
  /* TODO: what happens when there are less than 5 points ? */

  for(i = 0; i < size; i++) {
    /* First initialize values, though this is very suboptimal */
    v0 = y[i];
    if(i == 0) {
      delta_1 = x[1] - x[0]; v1 = y[1];
      delta_2 = x[2] - x[0]; v2 = y[2];
      delta_3 = x[3] - x[0]; v3 = y[3];
      delta_4 = x[4] - x[0]; v4 = y[4];
    } else if(i == 1) {
      delta_1 = x[0] - x[1]; v1 = y[0];
      delta_2 = x[2] - x[1]; v2 = y[2];
      delta_3 = x[3] - x[1]; v3 = y[3];
      delta_4 = x[4] - x[1]; v4 = y[4];
    } else if(i == size - 2) {
      delta_1 = x[size-1] - x[size-2]; v1 = y[size-1];
      delta_2 = x[size-3] - x[size-2]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-2]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-2]; v4 = y[size-5];
    } else if(i == size - 1) {
      delta_1 = x[size-2] - x[size-1]; v1 = y[size-2];
      delta_2 = x[size-3] - x[size-1]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-1]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-1]; v4 = y[size-5];
    } else {
      delta_1 = x[i-2] - x[i]; v1 = y[i-2];
      delta_2 = x[i-1] - x[i]; v2 = y[i-1];
      delta_3 = x[i+2] - x[i]; v3 = y[i+2];
      delta_4 = x[i+1] - x[i]; v4 = y[i+1];
    }
    alpha_1 = delta_2*delta_3*delta_4/
      (delta_1 * (delta_2 - delta_1) * (delta_3 - delta_1) 
       * (delta_4 - delta_1));
    alpha_2 = delta_1*delta_3*delta_4/
      (delta_2 * (delta_1 - delta_2) * (delta_3 - delta_2) 
       * (delta_4 - delta_2));
    alpha_3 = delta_1*delta_2*delta_4/
      (delta_3 * (delta_1 - delta_3) * (delta_2 - delta_3) 
       * (delta_4 - delta_3));
    alpha_4 = delta_1*delta_2*delta_3/
      (delta_4 * (delta_1 - delta_4) * (delta_2 - delta_4) 
       * (delta_3 - delta_4));
    Dvector_Push_Double(derivative,
			-(alpha_1 + alpha_2 + alpha_3 + alpha_4) * v0 +
			alpha_1 * v1 + alpha_2 * v2 + 
			alpha_3 * v3 + alpha_4 * v4);
  }
  return Function_Create(get_x_vector(self), derivative);
}

/*
  Computes a 4th order accurate second derivative of the Function.

  This function *requires* that there are at the very least 5 data
  points!  
*/
static VALUE function_diff2_5p(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  double delta_1, delta_2, delta_3, delta_4;
  double alpha_1, alpha_2, alpha_3, alpha_4;
  double v0,v1,v2,v3,v4;

  for(i = 0; i < size; i++) {
    /* First initialize values, though this is very suboptimal */
    v0 = y[i];
    if(i == 0) {
      delta_1 = x[1] - x[0]; v1 = y[1];
      delta_2 = x[2] - x[0]; v2 = y[2];
      delta_3 = x[3] - x[0]; v3 = y[3];
      delta_4 = x[4] - x[0]; v4 = y[4];
    } else if(i == 1) {
      delta_1 = x[0] - x[1]; v1 = y[0];
      delta_2 = x[2] - x[1]; v2 = y[2];
      delta_3 = x[3] - x[1]; v3 = y[3];
      delta_4 = x[4] - x[1]; v4 = y[4];
    } else if(i == size - 2) {
      delta_1 = x[size-1] - x[size-2]; v1 = y[size-1];
      delta_2 = x[size-3] - x[size-2]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-2]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-2]; v4 = y[size-5];
    } else if(i == size - 1) {
      delta_1 = x[size-2] - x[size-1]; v1 = y[size-2];
      delta_2 = x[size-3] - x[size-1]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-1]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-1]; v4 = y[size-5];
    } else {
      delta_1 = x[i-2] - x[i]; v1 = y[i-2];
      delta_2 = x[i-1] - x[i]; v2 = y[i-1];
      delta_3 = x[i+2] - x[i]; v3 = y[i+2];
      delta_4 = x[i+1] - x[i]; v4 = y[i+1];
    }
    alpha_1 = -2 * (delta_2*delta_3 + delta_2*delta_4 + delta_3*delta_4)/
      (delta_1 * (delta_2 - delta_1) * (delta_3 - delta_1) 
       * (delta_4 - delta_1));
    alpha_2 = -2 * (delta_1*delta_3 + delta_1*delta_4 + delta_3*delta_4)/
      (delta_2 * (delta_1 - delta_2) * (delta_3 - delta_2) 
       * (delta_4 - delta_2));
    alpha_3 = -2 * (delta_2*delta_1 + delta_2*delta_4 + delta_1*delta_4)/
      (delta_3 * (delta_1 - delta_3) * (delta_2 - delta_3) 
       * (delta_4 - delta_3));
    alpha_4 = -2 * (delta_2*delta_3 + delta_2*delta_1 + delta_3*delta_1)/
      (delta_4 * (delta_1 - delta_4) * (delta_2 - delta_4) 
       * (delta_3 - delta_4));
    Dvector_Push_Double(derivative,
			-(alpha_1 + alpha_2 + alpha_3 + alpha_4) * v0 +
			alpha_1 * v1 + alpha_2 * v2 + 
			alpha_3 * v3 + alpha_4 * v4);
  }
  return Function_Create(get_x_vector(self), derivative);
}

/*
  Returns the number of points inside the function.
*/
static VALUE function_size(VALUE self)
{
  long size = function_sanity_check(self);
  return LONG2NUM(size);
}

/* 
   Fuzzy substraction of two curves. Substracts the Y values of _op_ to
   the current Function, by making sure that the Y value substracted to
   a given point corresponds to the closest X_ value of the point in _op_.
   This function somehow assumes that the data is reasonably organised,
   and will never go backwards to find a matching X value in _op_.

   In any case, you really should consider using split_monotonic on it first.
 */

static VALUE function_fuzzy_substract(VALUE self, VALUE op)
{
  long ss = function_sanity_check(self);
  const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *ys = Dvector_Data_for_Write(get_y_vector(self),NULL);
  long so = function_sanity_check(op);
  const double *xo = Dvector_Data_for_Read(get_x_vector(op),NULL);
  const double *yo = Dvector_Data_for_Read(get_y_vector(op),NULL);
  long i,j = 0;
  double diff;
  double fuzz = 0; 		/* The actual sum of the terms */
  
  for(i = 0; i < ss; i++) 
    {
      /* We first look for the closest point */
      diff = fabs(xs[i] - xo[j]);
      while((j < (so - 1)) && (fabs(xs[i] - xo[j+1]) <  diff))
	diff = fabs(xs[i] - xo[++j]);
      fuzz += diff;
      ys[i] -= yo[j];
    }
  return rb_float_new(fuzz);
}

/* 
  call-seq:
    f.bound_values(xmin, xmax, ymin, ymax)

   This function browses the points inside the Function and stores in
   the resulting new function only points which are within boundaries,
   and the points just next to them (so the general direction on the sides
   looks fine).

   Make sure _xmin_ < _xmax_ and _ymin_ < _ymax_, else you simply won't
   get any output.
 */
static VALUE function_bound_values(VALUE self, 
				   VALUE vxmin, VALUE vxmax,
				   VALUE vymin, VALUE vymax)
{
  long ss = function_sanity_check(self);
  const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *ys = Dvector_Data_for_Read(get_y_vector(self),NULL);
  double xmin = NUM2DBL(vxmin);
  double xmax = NUM2DBL(vxmax);
  double ymin = NUM2DBL(vymin);
  double ymax = NUM2DBL(vymax);

  /* Now, two dvectors for writing: */
  VALUE x_out = rb_funcall(cDvector, idNew, 0);
  VALUE y_out = rb_funcall(cDvector, idNew, 0);

  /* No forward computation of the size of the targets, meaning
     memory allocation penalty.
  */
  
  int last_point_in = 0; 	/* Whether the last point was in */
  long i;
  for(i = 0; i < ss; i++) {
    double x = xs[i];
    double y = ys[i];
    if( (xmin <= x) && (xmax >= x) && (ymin <= y) && (ymax >= y)) {
      if(! last_point_in) {
	last_point_in = 1;
	if(i) {			/* Not for the first element */
	  Dvector_Push_Double(x_out, xs[i-1]);
	  Dvector_Push_Double(y_out, ys[i-1]);
	}
      }
      Dvector_Push_Double(x_out, x);
      Dvector_Push_Double(y_out, y);
    }
    else {			/* Outside boundaries */
      if(last_point_in) {
	last_point_in = 0;
	Dvector_Push_Double(x_out, x);
	Dvector_Push_Double(y_out, y);
      }
    }
  }
  return Function_Create(x_out, y_out);
}

/* Reverses the function. Equivalent to doing 

   x.reverse!
   y.reverse!
  
  excepted that it is faster (though not *much* faster).
*/
static VALUE function_reverse(VALUE self)
{
  long len = function_sanity_check(self);
  double *xs = Dvector_Data_for_Write(get_x_vector(self),NULL);
  double *ys = Dvector_Data_for_Write(get_y_vector(self),NULL);
  
  double *xe = xs+len-1;
  double *ye = ys+len-1;
  double tmp;
  long i;
  for(i = 0; i < len/2; i++, xs++, ys++, xe--, ye--) {
    tmp = *xe; *xe = *xs; *xs = tmp;
    tmp = *ye; *ye = *ys; *ys = tmp;
  }
  return self;
}

/* Computes the linear regression of the dataset. */
static void reglin(const double *x, const double *y, long nb, 
		   double *a, double *b)
{
  double sx = 0;
  double sy = 0;
  double sxx = 0;
  double sxy = 0;
  long i = 0;
  double det;
  for(i = 0; i < nb; i++, x++, y++) {
    sx += *x;
    sy += *y;
    sxx += *x * *x;
    sxy += *x * *y;
  }
  det = nb*sxx - sx*sx;
  if(det == 0) {
    *a = 0;			/* Whichever, we only have one point */
    *b = sy/nb;
  }
  else {
    *a = (nb *sxy - sx*sy)/det; 
    *b = (sxx * sy - sx * sxy)/(det);
  }
}


/* 
   Performs a linear regression of the Function; returns the pair
    [ a, b]
   where f(x) = a*x + b

   if the optional arguments _first_ and _last_ are provided, they
   represent the indices of the first and last elements.
 */
static VALUE function_reglin(int argc, VALUE *argv, VALUE self)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE ret = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
  double * dat = Dvector_Data_for_Write(ret, NULL);
  long nb;
  if(argc == 2) {
    long f = NUM2LONG(argv[0]);
    long l = NUM2LONG(argv[1]);
    if(f < 0)
      f = len + f;
    if(l < 0)
      l = len + l;
    x += f;
    y += f;
    nb = l - f;
  }
  else if(argc == 0) {
    nb = len;
  }
  else {
    rb_raise(rb_eArgError, "reglin should have 0 or 2 parameters");
  }
  reglin(x,y,nb,dat,dat+1);
  return ret;
}


/* Simply returns the sign */
static int signof(double x)
{
  if(x > 0)
    return 1;
  else if(x < 0)
    return -1;
  else
    return 0;
}

/* 
   Returns a "smoothed" value, according to the algorithm implented
   for "smooth" markers in Soas. See DOI:
   10.1016/j.bioelechem.2009.02.010
   
   Basically, we start at a given range, and narrow the range until
   the number of consecutive residuals of the same sign is lower than
   a quarter of the interval.

   It works

*/
double smooth_pick(const double *x, const double *y, 
		   long nb, long idx, long range)
{
  long left, right,i,nb_same_sign;
  double a,b;
  int last_sign;
  do {
    left = idx - range/2;
    if(left < 0) 
      left = 0;
    right = idx + range/2;
    if(right > nb)
      right = nb;
    reglin(x+left, y+left, right-left,&a,&b);
    if(range == 6)
      break; 			/* We stop here */
    last_sign = 0;
    for(i = left; i < right; i++) {
      double residual = y[i] - a * x[i] - b;
      if(! last_sign)
	last_sign = signof(residual);
      else if(last_sign == signof(residual))
	nb_same_sign ++;
      else {
	nb_same_sign = 1;
	last_sign = signof(residual);
      }
    }
    if(nb_same_sign * 4 <= right - left)
      break;
    range -= (nb_same_sign * 4 -range)/2 + 2;
    if(range < 6)
      range = 6;
  } while(1);
  /* Now, we have a and b for the last range measured. */
  return a*x[idx] + b;
}

/* 
   Attempts to pick a smooth value for a point, according to the
   algorithm implented for "smooth" markers in Soas. See DOI:
   10.1016/j.bioelechem.2009.02.010

   Warning: be wary of this function as it will return a correct
   value only for rather noisy data !
 */
static VALUE function_smooth_pick(int argc, VALUE *argv, VALUE self)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  long idx;
  long range;
  switch(argc) {
  case 2:
    range = NUM2LONG(argv[1]);
    break;
  case 1:
    range = len > 500 ? 50 : len/10;
    break;
  default:
    rb_raise(rb_eArgError, "smooth_a=t should have 1 or 2 parameters");
  }
  idx = NUM2LONG(argv[0]);
  if(idx < 0)
    idx = len + idx;
  return rb_float_new(smooth_pick(x,y,len,idx,range));
}

/* 
   Computes the convolution of the kernel with the dataset; the
   overall result is scaled
 */
static double norm_convolve(const double *y, long len, long idx,
			    const double * kernel, long klen, long kmid)
{
  double ret = 0;
  long ki,yi;
  double norm = 0;
  yi = idx - kmid;
  /* We ensure we don't go */
  if(yi < 0) {
    ki -= yi;
    yi = 0;
  }
  for(; ki < klen && yi < len; yi++, ki++) {
    norm += kernel[ki];
    ret += kernel[ki] * y[yi];
  }
  return ret/norm;
}

/*
  This functions tries to approximate the given data using a spline.

  The algorithm is the following:
  * one starts with 3 points: 2 on the sides and one at the middle
  * then, we pick an interval between the points where the sum of the
    square of the residuals is the greatest, and place a point there.
  * then, we repeat until we reach a maximum number of points (_nbmax_)

  Point positions are averaged over _nbavg_ using a gaussian-like
  filter.

  Interpolation is returned into the _xi_, _yi_ and _y2i_ vectors

  TODO: try to place the points more in the middle ? (provide a factor
  governing this)
  
  TODO: use moments to decide of the precise position of the
  points ?

*/
static void internal_spline_approximation(const double *x, const double *y,
					  long len, 
					  double *xi, double *yi, 
					  double *y2i,
					  long nbmax,
					  long nbavg, 
					  double * target) 
{
  double left_slope;		/* Derivative on the left */
  double right_slope;		/* Same on the right */
  
  /* The gaussian kernel for the average */
  double kernel[nbavg];
  
  /* The indices of the point where the residuals are maximal */
  long max_res_idx[nbmax-1];

  /* The indices of the corner points*/
  long indices[nbmax];

  long i;
  long cur_size = 3;
  double tmp,tmp2;
  /* Initialization of the kernel */
  long mid = nbavg/2;		/* Middle of the kernel */
  for(i = 0,tmp=0; i < nbavg; i++) {
    tmp = (3.2 * (i - nbavg/2))/nbavg; /* Gives about 7% left on the
					  side elements */
    tmp = exp(-tmp*tmp);
    kernel[i] = tmp;
  }
  
  /* Left side */
  xi[0] = x[0];
  reglin(x,y, mid+1, &left_slope, &tmp2);
  yi[0] = left_slope * x[0] + tmp2;
  indices[0] = 0;

  /* Middle */
  xi[1] = x[len/2];
  yi[1] = norm_convolve(y, len, len/2, kernel, nbavg, mid);
  indices[1] = len/2;

  /* Right */
  xi[2] = x[len-1];
  reglin(x+(len-(mid+2)),y + (len-(mid+2)), mid+1, &right_slope, &tmp2);
  yi[2] = right_slope * x[len-1] + tmp2;
  indices[2] = len - 1;

  do {
    long cur_seg;
    long max_res_seg = 0;	/* The segment where the residuals are
				   the greatest */
    double max_res = 0;

    long max_deviation_seg = 0; /* The segment where the deviation
				   (square of the average) is the
				   greatest */
    double max_deviation = 0;

    long chosen_seg;	      /* The segment in which we'll add a point */
    /* Compute interpolation */
    function_fill_second_derivatives(cur_size, xi, yi, y2i, 
				     left_slope, right_slope);


    /* We stop here if we have reached the max number and we're not
       interested in Y values */
    if(cur_size >= nbmax && !target)
      break;

    /* Now we compute the residuals  */
    for(cur_seg = 0; cur_seg < cur_size - 1; cur_seg++) {
      double residuals = 0;
      double a,b,int_y,delta,h = xi[cur_seg+1] - xi[cur_seg];
      double imr = 0;		/* Internal max residuals */
      double deviation = 0;
      /* printf("seg: %ld/%ld indices %ld -- %ld\n", cur_seg, cur_size-1,  */
      /* 	     indices[cur_seg], indices[cur_seg+1]); */
      for(i = indices[cur_seg] + 1; i < indices[cur_seg+1]; i++) {
	a = (xi[cur_seg+1] - x[i])/h;
	b = (x[i] - xi[cur_seg])/h;
	int_y = a * yi[cur_seg] + b * yi[cur_seg + 1] 
	  + ((a*a*a - a) * y2i[cur_seg] +
	     (b*b*b - b) * y2i[cur_seg + 1]) * 
	  (h * h)/6.0;
	if(target)		/* We set the value if applicable. */
	  target[i] = int_y;
	delta = int_y - y[i];
	deviation += delta;
	delta *= delta;
	residuals += delta;
	if(delta > imr) {
	  imr = delta;
	  max_res_idx[cur_seg] = i;
	}
      }
      if(max_res < residuals) {
	max_res = residuals;
	max_res_seg = cur_seg;
      }
      deviation *= deviation;
      if(deviation > max_deviation) {
	max_deviation_seg = cur_seg;
	max_deviation = deviation;
      }
      /* printf(" -> residuals %g\n", cur_seg, cur_size-1,  */
      /* 	     residuals); */
    }
    /* printf("-> max residuals at segment %d\n", max_res_seg); */

    if(cur_size >= nbmax)
      break;

    
    /* OK, so now we know in which segment the residuals are the
       greatest, and which point of this segment is holds the max
       residuals. So we just add a point there */
    chosen_seg = max_deviation_seg;

    /* We shift the positions */
    for(i = cur_size; i > chosen_seg + 1; i--) {
      xi[i] = xi[i-1];
      yi[i] = yi[i-1];
      y2i[i] = y2i[i-1];
      indices[i] = indices[i-1];
    }
    cur_size++;
    xi[chosen_seg + 1] = x[max_res_idx[chosen_seg]];
    yi[chosen_seg + 1] = norm_convolve(y, len, max_res_idx[chosen_seg], 
					kernel, nbavg, mid);
    indices[chosen_seg + 1] = max_res_idx[chosen_seg];
  } while(1);

  /* Now fill in the missing values of y, since we do not evaluate them */
  if(target) {
    for(i = 0; i < nbmax; i++)
      target[indices[i]] = yi[i];
  }
  
  
}

/* 
   Filters the Function through interpolation. _params_ holds a 
   hash with the following values:
   * ??

   It returns a hash.
*/
static VALUE function_spline_approximation(VALUE self, VALUE params)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE xiret, yiret, y2iret, yintret,ret;
  double * xi, *yi, *y2i, *yint;
  long nbavg = 9;  
  long nbmax = 20;
  if(RTEST(rb_hash_aref(params, rb_str_new2("number"))))
    nbmax = NUM2LONG(rb_hash_aref(params, rb_str_new2("number")));
  if(RTEST(rb_hash_aref(params, rb_str_new2("average"))))
    nbavg = NUM2LONG(rb_hash_aref(params, rb_str_new2("average")));

  /* TODO: add checks that monotonic and growing. */
  
  xiret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  xi = Dvector_Data_for_Write(xiret, NULL);
  yiret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  yi = Dvector_Data_for_Write(yiret, NULL);
  y2iret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  y2i = Dvector_Data_for_Write(y2iret, NULL);
  yintret = rb_funcall(cDvector, idNew, 1, INT2NUM(len)); 
  yint = Dvector_Data_for_Write(yintret, NULL);

  internal_spline_approximation(x, y, len, xi, yi, y2i,
				nbmax, nbavg, yint);
  ret = rb_hash_new();
  rb_hash_aset(ret, rb_str_new2("xi"), xiret);
  rb_hash_aset(ret, rb_str_new2("yi"), yiret);
  rb_hash_aset(ret, rb_str_new2("y2i"), y2iret);
  rb_hash_aset(ret, rb_str_new2("y"), yintret);
  return ret;
}


/*
  Document-class: Dobjects::Function

  Function is a class that embeds two Dvectors, one for X data and one for Y 
  data. It provides 

  - facilities for sorting the X while keeping the Y matching, with #sort and
    Function.joint_sort;
  - to check if X data is sorted: #sorted?, #is_sorted;
  - interpolation, with #compute_spline, #compute_spline_data and #interpolate
  - some functions for data access : #x, #y, #point;
  - some utiliy functions: #split_monotonic, #strip_nan, #reverse!
  - data inspection: #min, #max;
  - some computational functions: #integrate, #primitive, #derivative,
    and now 4th-order accurate first and second derivatives: #diff_5p
    and #diff2_5p
  - utility for fuzzy operations, when the X values of two functions
    differ, but only slightly, of when points are missing: 
    #fuzzy_sub!
  - linear regression #reglin
  - a function to approximate data using a low-order spline:
    #spline_approximation

  And getting bigger (almost) everyday...
 */ 
void Init_Function() 
{
  init_IDs();
  
  rb_require("Dobjects/Dvector");
  VALUE mDobjects = rb_define_module("Dobjects");
  cFunction = rb_define_class_under(mDobjects, "Function", rb_cObject);

  /* get the Dvector class */
  cDvector = rb_const_get(mDobjects, rb_intern("Dvector"));

  rb_define_method(cFunction, "initialize", function_initialize, 2);
  rb_define_method(cFunction, "sorted?", function_is_sorted, 0);
  rb_define_method(cFunction, "reverse!", function_reverse, 0);
  rb_define_alias(cFunction,  "is_sorted", "sorted?");

  rb_define_singleton_method(cFunction, "joint_sort", function_joint_sort, 2);
  rb_define_method(cFunction, "sort", function_sort, 0);

  /* spline stuff :*/
  rb_define_method(cFunction, "compute_spline_data", 
		   function_compute_spline_data, 0);
  rb_define_method(cFunction, "compute_spline", 
		   function_compute_spline, 1);

  rb_define_method(cFunction, "interpolate", 
		   function_interpolate, 1);
  rb_define_method(cFunction, "make_interpolant", 
		   function_make_interpolant, 0);
  rb_define_method(cFunction, "spline_approximation", 
		   function_spline_approximation, 1);


  /* access to data */
  rb_define_method(cFunction, "point", function_point, 1);
  rb_define_method(cFunction, "[]", function_point, 1);
  rb_define_method(cFunction, "x", get_x_vector, 0);
  rb_define_method(cFunction, "y", get_y_vector, 0);


  rb_define_method(cFunction, "size", function_size, 0);
  rb_define_alias(cFunction,  "length", "size");

  /* Soas-like functions ;-) */
  rb_define_method(cFunction, "reglin", function_reglin, -1);
  rb_define_method(cFunction, "smooth_pick", function_smooth_pick, -1);

		   

  /* iterator */
  rb_define_method(cFunction, "each", 
		   function_each, 0);

  /* stripping of NaNs */
  rb_define_method(cFunction, "strip_nan", function_strip_nan, 0);

  /* split into subfunctions with given properties */
  rb_define_method(cFunction, "split_monotonic", function_split_monotonic, 0);
  rb_define_method(cFunction, "split_on_nan", function_split_on_nan, 1);

  /* integration between two integer boundaries */
  rb_define_method(cFunction, "integrate", function_integrate, -1);
  /* primitive */
  rb_define_method(cFunction, "primitive", function_primitive, 0);
  /* derivative */
  rb_define_method(cFunction, "derivative", function_derivative, 0);

  /* 5-points derivatives */
  rb_define_method(cFunction, "diff_5p", function_diff_5p, 0);
  rb_define_method(cFunction, "diff2_5p", function_diff2_5p, 0);

  /* distance to a point */
  rb_define_method(cFunction, "distance", function_distance, -1);

  /* Fuzzy operations */
  rb_define_method(cFunction, "fuzzy_sub!", 
		   function_fuzzy_substract, 1); /* Substraction */
  

  /* Boundary operations */
  rb_define_method(cFunction, "bound_values", 
		   function_bound_values, 4); /* Substraction */


  /* a few more methods better written in pure Ruby */
  rb_require("Dobjects/Function_extras.rb");

  /* now, we import the necessary symbols from Dvector */
  RB_IMPORT_SYMBOL(cDvector, Dvector_Data_for_Read);
  RB_IMPORT_SYMBOL(cDvector, Dvector_Data_for_Write);
  RB_IMPORT_SYMBOL(cDvector, Dvector_Data_Resize);
  RB_IMPORT_SYMBOL(cDvector, Dvector_Create);
  RB_IMPORT_SYMBOL(cDvector, Dvector_Push_Double);
}

IMPLEMENT_SYMBOL(Dvector_Data_for_Read);
IMPLEMENT_SYMBOL(Dvector_Data_for_Write);
IMPLEMENT_SYMBOL(Dvector_Data_Resize);
IMPLEMENT_SYMBOL(Dvector_Create);
IMPLEMENT_SYMBOL(Dvector_Push_Double);