1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
require 'Dobjects/Function'
require 'test/unit'
class TestFunction < Test::Unit::TestCase
include Dobjects
def test_sorted
x_1 = Dvector[1,2,3]
x_2 = Dvector[1,3,2]
f_1 = Function.new(x_1, x_2)
f_2 = Function.new(x_2, x_1)
assert(f_1.sorted?)
assert(! f_2.sorted?)
end
NUMBER = 20
def test_joint_sort
x_1 = Dvector.new(NUMBER)
x_1.collect! { |x|
rand
}
x_2 = x_1.dup
Function.joint_sort(x_1,x_2)
NUMBER.times do |i|
assert_equal(x_1[i],x_2[i])
end
f = Function.new(x_1,x_2)
assert(f.sorted?)
end
def test_point
x = Dvector[1,3,2]
y = Dvector[2,3,4]
f = Function.new(x,y)
p = f.point(2)
assert_equal(p[0],2.0)
assert_equal(p[1],4.0)
f.sort
p = f.point(2)
assert_equal(p[0],3.0)
assert_equal(p[1],3.0)
end
def test_bounds
x_1 = Dvector[1,2,3,4]
x_2 = Dvector[1,9,2,0.1]
f = Function.new(x_1, x_2)
assert_equal(f.bounds, [1,0.1,4,9])
end
def test_strip
x = Dvector[1,3,2,4]
y = Dvector[2,3,4,5]
x[1] = 0.0/0.0
y[2] = 0.0/0.0
f = Function.new(x,y)
assert_equal(f.strip_nan, 2)
assert_equal(f.x, Dvector[1,4])
assert_equal(f.y, Dvector[2,5])
end
def test_monotonic
x = Dvector[1,3,2,4,5,6]
y = x.dup
f = Function.new(x,y)
ary = f.split_monotonic
assert_equal(ary.size, 3)
x = Dvector[1,3]
assert_equal(ary[0].x, x)
x = Dvector[3,2]
assert_equal(ary[1].x, x)
x = Dvector[2,4,5,6]
assert_equal(ary[2].x, x)
end
def test_nan
nan = 0.0/0.0
x = Dvector[1,nan,2,nan,5,6]
y = Dvector[2,3,nan,3,4,5]
f = Function.new(x,y)
ary = f.split_on_nan(nil)
assert_equal(ary.size, 4)
ary = f.split_on_nan(:y)
assert_equal(ary.size, 2)
ary = f.split_on_nan(:x)
assert_equal(ary.size, 3)
end
def test_integrate
x = Dvector[1,2,4]
y = Dvector[0,1,2]
f = Function.new(x,y)
# integral should be 0.5 + 1.5 * 2
assert_equal(f.integrate, 3.5)
assert_equal(f.integrate(0,1), 0.5)
assert_equal(f.integrate(1,2), 3)
g = f.primitive
assert_equal(f.x, g.x)
end
def test_length
x = Dvector[1,2,4]
y = Dvector[0,1,2]
f = Function.new(x,y)
assert_equal(f.size, 3)
assert_equal(f.length, 3)
end
def test_distance
f = Function.new(Dvector[0],Dvector[0])
assert_equal(f.distance(3,4), 5.0)
f = Function.new(Dvector[0,1],Dvector[0,1])
assert_equal(f.distance(1,1), 0.0)
assert_equal(f.distance(0,1), 1.0)
assert_equal(f.distance(1,0), 1.0)
assert_equal(f.distance(1,0), 1.0)
end
def test_fuzzy_ops
f = Function.new(Dvector[1,2,3,4],Dvector[1,2,3,4])
g = Function.new(Dvector[1,2,4],Dvector[1,2,3])
a = g.fuzzy_sub!(f)
assert_equal(a,0.0)
assert_equal(g.y, Dvector[0,0,-1])
end
def test_bounds
x = Dvector[1,2,3,4,5]
y = Dvector[0,4,3,4,2]
f = Function.new(x,y)
# First, big boundaries
g = f.bound_values(0, 10, 0, 10)
assert_equal(f.x, g.x)
assert_equal(f.y, g.y)
# Too small boundaries
g = f.bound_values(0,0,0,0)
assert_equal(0, g.size)
# Real boundaries, but taking the sides make so
# that we have the same in the end that at the beginning
g = f.bound_values(2,4,0,10)
assert_equal(f.x, g.x)
assert_equal(f.y, g.y)
# It really should be fine.
end
# Testing derivatives
def test_derivatives
x = Dvector.new
y = Dvector.new
d1 = Dvector.new
d2 = Dvector.new
30.times do |i|
x << i
y << i*i*i
d1 << 3 * i * i
d2 << 6 * i
end
f = Function.new(x,y)
# First derivative
f1 = f.diff_5p
d1.sub!(f1.y)
d1.each do |x|
assert_in_delta(x,0,1e-10)
end
# Second derivative
f1 = f.diff2_5p
d2.sub!(f1.y)
d2.each do |x|
assert_in_delta(x,0,1e-10)
end
end
# Test revert!
def test_revert
a = Dvector[1,2,3,4]
b = Dvector[5,6,7,8]
f = Function.new(a,b)
f.reverse!
assert_equal(f.x, Dvector[4,3,2,1])
assert_equal(f.y, Dvector[8,7,6,5])
a = Dvector[1,2,4]
b = Dvector[5,6,8]
f = Function.new(a,b)
f.reverse!
assert_equal(f.x, Dvector[4,2,1])
assert_equal(f.y, Dvector[8,6,5])
end
# Test the linear regression
def test_reglin
x = Dvector.new(20) do |i|
i
end
y = Dvector.new(20) do |i|
1.23 * i + 2.04
end
f = Function.new(x,y)
a,b = f.reglin
assert_equal(a, 1.23)
assert_equal(b, 2.04)
end
# There is unfortunately no simple way to test the interpolations...
end
|