1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
# This module provides an interface to the vips image processing library
# via ruby-ffi.
#
# Author:: John Cupitt (mailto:jcupitt@gmail.com)
# License:: MIT
require "ffi"
require "logger"
# This module uses FFI to make a simple layer over the glib and gobject
# libraries.
# Generate a library name for ffi.
#
# Platform notes:
# linux:
# Some distros allow "libvips.so", but only if the -dev headers have been
# installed. To work everywhere, you must include the ABI number.
# Confusingly, the file extension is not at the end. ffi adds the "lib"
# prefix.
# mac:
# As linux, but the extension is at the end and is added by ffi.
# windows:
# The ABI number must be included, but with a hyphen. ffi does not add a
# "lib" prefix or a ".dll" suffix.
def library_name(name, abi_number)
if FFI::Platform.windows?
"lib#{name}-#{abi_number}.dll"
elsif FFI::Platform.mac?
"#{name}.#{abi_number}"
else
"#{name}.so.#{abi_number}"
end
end
module GLib
class << self
attr_accessor :logger
end
@logger = Logger.new($stdout)
@logger.level = Logger::WARN
extend FFI::Library
ffi_lib library_name("glib-2.0", 0)
attach_function :g_malloc, [:size_t], :pointer
# save the FFI::Function that attach will return ... we can use it directly
# as a param for callbacks
G_FREE = attach_function :g_free, [:pointer], :void
callback :g_log_func, [:string, :int, :string, :pointer], :void
attach_function :g_log_set_handler,
[:string, :int, :g_log_func, :pointer], :int
attach_function :g_log_remove_handler, [:string, :int], :void
# log flags
LOG_FLAG_RECURSION = 1 << 0
LOG_FLAG_FATAL = 1 << 1
# GLib log levels
LOG_LEVEL_ERROR = 1 << 2 # always fatal
LOG_LEVEL_CRITICAL = 1 << 3
LOG_LEVEL_WARNING = 1 << 4
LOG_LEVEL_MESSAGE = 1 << 5
LOG_LEVEL_INFO = 1 << 6
LOG_LEVEL_DEBUG = 1 << 7
# map glib levels to Logger::Severity
GLIB_TO_SEVERITY = {
LOG_LEVEL_ERROR => Logger::ERROR,
LOG_LEVEL_CRITICAL => Logger::FATAL,
LOG_LEVEL_WARNING => Logger::WARN,
LOG_LEVEL_MESSAGE => Logger::UNKNOWN,
LOG_LEVEL_INFO => Logger::INFO,
LOG_LEVEL_DEBUG => Logger::DEBUG
}
GLIB_TO_SEVERITY.default = Logger::UNKNOWN
# nil being the default
@glib_log_domain = nil
@glib_log_handler_id = 0
# module-level, so it's not GCd away
LOG_HANDLER = proc { |domain, level, message, _user_data|
@logger.log(GLIB_TO_SEVERITY[level], message, domain)
}
def self.remove_log_handler
if @glib_log_handler_id != 0 && @glib_log_domain
g_log_remove_handler @glib_log_domain, @glib_log_handler_id
@glib_log_handler_id = nil
end
end
def self.set_log_domain domain
GLib.remove_log_handler
@glib_log_domain = domain
# forward all glib logging output from this domain to a Ruby logger
if @glib_log_domain
# disable this feature for now
#
# libvips background worker threads can issue warnings, and
# since the main thread is blocked waiting for libvips to come back
# from an ffi call, you get a deadlock on the GIL
#
# to fix this, we need a way for g_log() calls from libvips workers
# to be returned via the main thread
#
# @glib_log_handler_id = g_log_set_handler @glib_log_domain,
# LOG_LEVEL_DEBUG |
# LOG_LEVEL_INFO |
# LOG_LEVEL_MESSAGE |
# LOG_LEVEL_WARNING |
# LOG_LEVEL_ERROR |
# LOG_LEVEL_CRITICAL |
# LOG_FLAG_FATAL | LOG_FLAG_RECURSION,
# LOG_HANDLER, nil
# we must remove any handlers on exit, since libvips may log stuff
# on shutdown and we don't want LOG_HANDLER to be invoked
# after Ruby has gone
at_exit {
GLib.remove_log_handler
}
end
end
end
module GObject
extend FFI::Library
ffi_lib library_name("gobject-2.0", 0)
# we can't just use ulong, windows has different int sizing rules
if FFI::Platform::ADDRESS_SIZE == 64
typedef :uint64, :GType
else
typedef :uint32, :GType
end
attach_function :g_type_init, [], :void
attach_function :g_type_name, [:GType], :string
attach_function :g_type_from_name, [:string], :GType
attach_function :g_type_fundamental, [:GType], :GType
# glib before 2.36 needed this, does nothing in current glib
g_type_init
# look up some common gtypes
GBOOL_TYPE = g_type_from_name "gboolean"
GINT_TYPE = g_type_from_name "gint"
GUINT64_TYPE = g_type_from_name "guint64"
GDOUBLE_TYPE = g_type_from_name "gdouble"
GENUM_TYPE = g_type_from_name "GEnum"
GFLAGS_TYPE = g_type_from_name "GFlags"
GSTR_TYPE = g_type_from_name "gchararray"
GOBJECT_TYPE = g_type_from_name "GObject"
end
require "vips/gobject"
require "vips/gvalue"
# This module provides a binding for the [libvips image processing
# library](https://libvips.github.io/libvips/).
#
# # Example
#
# ```ruby
# require 'vips'
#
# if ARGV.length < 2
# raise "usage: #{$PROGRAM_NAME}: input-file output-file"
# end
#
# im = Vips::Image.new_from_file ARGV[0], access: :sequential
#
# im *= [1, 2, 1]
#
# mask = Vips::Image.new_from_array [
# [-1, -1, -1],
# [-1, 16, -1],
# [-1, -1, -1]
# ], 8
# im = im.conv mask, precision: :integer
#
# im.write_to_file ARGV[1]
# ```
#
# This example loads a file, boosts the green channel (I'm not sure why),
# sharpens the image, and saves it back to disc again.
#
# Reading this example line by line, we have:
#
# ```ruby
# im = Vips::Image.new_from_file ARGV[0], access: :sequential
# ```
#
# {Image.new_from_file} can load any image file supported by vips. In this
# example, we will be accessing pixels top-to-bottom as we sweep through the
# image reading and writing, so `:sequential` access mode is best for us. The
# default mode is `:random`: this allows for full random access to image pixels,
# but is slower and needs more memory. See {Access}
# for full details
# on the various modes available.
#
# You can also load formatted images from memory buffers, create images that
# wrap C-style memory arrays, or make images from constants. Use {Source}
# and {Image.new_from_source} to load images from any data source, for
# example URIs.
#
# The next line:
#
# ```ruby
# im *= [1, 2, 1]
# ```
#
# Multiplying the image by an array constant uses one array element for each
# image band. This line assumes that the input image has three bands and will
# double the middle band. For RGB images, that's doubling green.
#
# Next we have:
#
# ```ruby
# mask = Vips::Image.new_from_array [
# [-1, -1, -1],
# [-1, 16, -1],
# [-1, -1, -1]
# ], 8
# im = im.conv mask, precision: :integer
# ```
#
# {Image.new_from_array} creates an image from an array constant. The 8 at
# the end sets the scale: the amount to divide the image by after
# integer convolution.
#
# See the libvips API docs for `vips_conv()` (the operation
# invoked by {Image#conv}) for details on the convolution operator. By default,
# it computes with a float mask, but `:integer` is fine for this case, and is
# much faster.
#
# Finally:
#
# ```ruby
# im.write_to_file ARGV[1]
# ```
#
# {Image#write_to_file} writes an image back to the filesystem. It can
# write any format supported by vips: the file type is set from the filename
# suffix. You can also write formatted images to memory buffers, or dump
# image data to a raw memory array.
#
# Use {Target} and {Image#write_to_target} to write formatted images to
# any data sink, for example URIs.
#
# # How it works
#
# The binding uses [ruby-ffi](https://github.com/ffi/ffi) to open the libvips
# shared library. When you call a method on the image class, it uses libvips
# introspection system (based on GObject) to search the
# library for an operation of that name, transforms the arguments to a form
# libvips can digest, and runs the operation.
#
# This means ruby-vips always presents the API implemented by the libvips shared
# library. It should update itself as new features are added.
#
# # Automatic wrapping
#
# `ruby-vips` adds a {Image.method_missing} handler to {Image} and uses
# it to look up vips operations. For example, the libvips operation `add`, which
# appears in C as `vips_add()`, appears in Ruby as {Image#add}.
#
# The operation's list of required arguments is searched and the first input
# image is set to the value of `self`. Operations which do not take an input
# image, such as {Image.black}, appear as class methods. The remainder of
# the arguments you supply in the function call are used to set the other
# required input arguments. Any trailing keyword arguments are used to set
# options on the operation.
#
# The result is the required output
# argument if there is only one result, or an array of values if the operation
# produces several results. If the operation has optional output objects, they
# are returned as a final hash.
#
# For example, {Image#min}, the vips operation that searches an image for
# the minimum value, has a large number of optional arguments. You can use it to
# find the minimum value like this:
#
# ```ruby
# min_value = image.min
# ```
#
# You can ask it to return the position of the minimum with `:x` and `:y`.
#
# ```ruby
# min_value, opts = min x: true, y: true
# x_pos = opts['x']
# y_pos = opts['y']
# ```
#
# Now `x_pos` and `y_pos` will have the coordinates of the minimum value.
# There's actually a convenience method for this, {Image#minpos}.
#
# You can also ask for the top *n* minimum, for example:
#
# ```ruby
# min_value, opts = min size: 10, x_array: true, y_array: true
# x_pos = opts['x_array']
# y_pos = opts['y_array']
# ```
#
# Now `x_pos` and `y_pos` will be 10-element arrays.
#
# Because operations are member functions and return the result image, you can
# chain them. For example, you can write:
#
# ```ruby
# result_image = image.real.cos
# ```
#
# to calculate the cosine of the real part of a complex image.
# There are also a full set
# of arithmetic operator overloads, see below.
#
# libvips types are also automatically wrapped. The override looks at the type
# of argument required by the operation and converts the value you supply,
# when it can. For example, {Image#linear} takes a `VipsArrayDouble` as
# an argument
# for the set of constants to use for multiplication. You can supply this
# value as an integer, a float, or some kind of compound object and it
# will be converted for you. You can write:
#
# ```ruby
# result_image = image.linear 1, 3
# result_image = image.linear 12.4, 13.9
# result_image = image.linear [1, 2, 3], [4, 5, 6]
# result_image = image.linear 1, [4, 5, 6]
# ```
#
# And so on. A set of overloads are defined for {Image#linear}, see below.
#
# It does a couple of more ambitious conversions. It will automatically convert
# to and from the various vips types, like `VipsBlob` and `VipsArrayImage`. For
# example, you can read the ICC profile out of an image like this:
#
# ```ruby
# profile = im.get_value "icc-profile-data"
# ```
#
# and profile will be a byte array.
#
# If an operation takes several input images, you can use a constant for all but
# one of them and the wrapper will expand the constant to an image for you. For
# example, {Image#ifthenelse} uses a condition image to pick pixels
# between a then and an else image:
#
# ```ruby
# result_image = condition_image.ifthenelse then_image, else_image
# ```
#
# You can use a constant instead of either the then or the else parts and it
# will be expanded to an image for you. If you use a constant for both then and
# else, it will be expanded to match the condition image. For example:
#
# ```ruby
# result_image = condition_image.ifthenelse [0, 255, 0], [255, 0, 0]
# ```
#
# Will make an image where true pixels are green and false pixels are red.
#
# This is useful for {Image#bandjoin}, the thing to join two or more
# images up bandwise. You can write:
#
# ```ruby
# rgba = rgb.bandjoin 255
# ```
#
# to append a constant 255 band to an image, perhaps to add an alpha channel. Of
# course you can also write:
#
# ```ruby
# result_image = image1.bandjoin image2
# result_image = image1.bandjoin [image2, image3]
# result_image = Vips::Image.bandjoin [image1, image2, image3]
# result_image = image1.bandjoin [image2, 255]
# ```
#
# and so on.
#
# # Logging
#
# Libvips uses g_log() to log warning, debug, info and (some) error messages.
#
# https://developer.gnome.org/glib/stable/glib-Message-Logging.html
#
# You can disable warnings by defining the `VIPS_WARNING` environment variable.
# You can enable info output by defining `VIPS_INFO`.
#
# # Exceptions
#
# The wrapper spots errors from vips operations and raises the {Vips::Error}
# exception. You can catch it in the usual way.
#
# # Automatic YARD documentation
#
# The bulk of these API docs are generated automatically by {Yard#generate}.
# It examines libvips and writes a summary of each operation and the arguments
# and options that that operation expects.
#
# Use the [C API # docs](https://libvips.github.io/libvips/API/current)
# for more detail.
#
# # Enums
#
# The libvips enums, such as `VipsBandFormat` appear in ruby-vips as Symbols
# like `:uchar`. They are documented as a set of classes for convenience, see
# {Vips::BandFormat}, for example.
#
# # Draw operations
#
# There are two ways of calling the libvips draw operations, like
# {Image#draw_circle} and {Image#draw_line}.
#
# First, you can use them like functions. For example:
#
# ```ruby
# y = x.draw_line 255, 0, 0, x.width, x.height
# ```
#
# This will make a new image, `y`, which is a copy of `x` but with a line
# drawn across it. `x` is unchanged.
#
# This is simple, but will be slow if you want to draw many lines, since
# ruby-vips will make a copy of the whole image each time.
#
# You can use {Image#mutate} to make a {MutableImage}. This is an image which
# is unshared and is only available inside the {Image#mutate} block. Within
# this block, you can use `!` versions of the draw operations to modify images
# and avoid the copy. For example:
#
# ```ruby
# image = image.mutate do |mutable|
# (0 ... 1).step(0.01) do |i|
# mutable.draw_line! 255, mutable.width * i, 0, 0, mutable.height * (1 - i)
# end
# end
# ```
#
# Now each {Image#draw_line} will directly modify the mutable image, saving
# the copy. This is much faster and needs much less memory.
#
# # Metadata read
#
# Use {Image#get_fields} to get a list of the metadata fields that an image
# supports. ICC profiles, for example, are in a field called
# `icc-profile-data`. Use `vipsheader -a something.jpg` at the command-line
# to see all the fields on an image.
#
# Use {Image#get_typeof} to get the type of a field. Types are integers, with
# 0 meaning "no such field". Constants like {GObject::GINT_TYPE} are useful for
# testing field types.
#
# You can read image metadata using {Image#get}. The field value is converted
# to a Ruby value in the obvious way.
#
# # Metadata write
#
# You can also set and remove image metadata fields. Images are immutable, so
# you must make any changes inside a {Image#mutate} block. For example:
#
# ```ruby
# image = image.mutate do |mutable|
# image.get_fields.each do |field|
# mutable.remove! field unless field == "icc-profile-data"
# end
# end
# ```
#
# To remove all metadata except the icc profile.
#
# You can use {MutableImage#set!} to change the value of an existing field,
# and {MutableImage#set_type!} to create a new field with a specified type.
#
# # Progress
#
# You can attach signal handlers to images to watch computation progress. For
# example:
#
# ```ruby
# image = Vips::Image.black 1, 100000
# image.set_progress true
#
# def progress_to_s(name, progress)
# puts "#{name}:"
# puts " run = #{progress[:run]}"
# puts " eta = #{progress[:eta]}"
# puts " tpels = #{progress[:tpels]}"
# puts " npels = #{progress[:npels]}"
# puts " percent = #{progress[:percent]}"
# end
#
# image.signal_connect :preeval do |progress|
# progress_to_s("preeval", progress)
# end
#
# image.signal_connect :eval do |progress|
# progress_to_s("eval", progress)
# image.set_kill(true) if progress[:percent] > 50
# end
#
# image.signal_connect :posteval do |progress|
# progress_to_s("posteval", progress)
# end
#
# image.avg
# ```
#
# The `:eval` signal will fire for every tile that is processed. You can stop
# progress with {Image#set_kill} and processing will end with an exception.
#
# User streams
#
# You can make your own input and output stream objects with {SourceCustom} and
# {TargetCustom}. For example:
#
# ```ruby
# file = File.open "some/file", "rb"
# source = Vips::SourceCustom.new
# source.on_read { |length| file.read length }
# image = Vips::Image.new_from_source source, "", access: "sequential"
# ```
#
# # Overloads
#
# The wrapper defines the usual set of arithmetic, boolean and relational
# overloads on image. You can mix images, constants and lists of constants
# (almost) freely. For example, you can write:
#
# ```ruby
# result_image = ((image * [1, 2, 3]).abs < 128) | 4
# ```
#
# # Expansions
#
# Some vips operators take an enum to select an action, for example
# {Image#math} can be used to calculate sine of every pixel like this:
#
# ```ruby
# result_image = image.math :sin
# ```
#
# This is annoying, so the wrapper expands all these enums into separate members
# named after the enum. So you can write:
#
# ```ruby
# result_image = image.sin
# ```
#
# # Convenience functions
#
# The wrapper defines a few extra useful utility functions:
# {Image#get_value}, {Image#set_value}, {Image#bandsplit},
# {Image#maxpos}, {Image#minpos},
# {Image#median}.
module Vips
extend FFI::Library
ffi_lib library_name("vips", 42)
LOG_DOMAIN = "VIPS"
GLib.set_log_domain LOG_DOMAIN
# we can't just use ulong, windows has different int sizing rules
if FFI::Platform::ADDRESS_SIZE == 64
typedef :uint64, :GType
else
typedef :uint32, :GType
end
attach_function :vips_error_buffer, [], :string
attach_function :vips_error_clear, [], :void
attach_function :vips_error_freeze, [], :void
attach_function :vips_error_thaw, [], :void
# The ruby-vips error class.
class Error < RuntimeError
# @param msg [String] The error message. If this is not supplied, grab
# and clear the vips error buffer and use that.
def initialize msg = nil
if msg
@details = msg
elsif Vips.vips_error_buffer != ""
@details = Vips.vips_error_buffer
Vips.vips_error_clear
else
@details = nil
end
end
# Pretty-print a {Vips::Error}.
#
# @return [String] The error message
def to_s
if !@details.nil?
@details
else
super.to_s
end
end
end
attach_function :vips_init, [:string], :int
if Vips.vips_init($0) != 0
throw Vips.get_error
end
# don't use at_exit to call vips_shutdown, it causes problems with fork, and
# in any case libvips does this for us
attach_function :vips_leak_set, [:int], :void
attach_function :vips_vector_set_enabled, [:int], :void
attach_function :vips_concurrency_set, [:int], :void
# vips_foreign_get_suffixes was added in libvips 8.8
begin
attach_function :vips_foreign_get_suffixes, [], :pointer
rescue FFI::NotFoundError
nil
end
# Turn libvips leak testing on and off. Handy for debugging ruby-vips, not
# very useful for user code.
def self.leak_set leak
vips_leak_set((leak ? 1 : 0))
end
attach_function :vips_cache_set_max, [:int], :void
attach_function :vips_cache_set_max_mem, [:int], :void
attach_function :vips_cache_set_max_files, [:int], :void
# Set the maximum number of operations that libvips should cache. Set 0 to
# disable the operation cache. The default is 1000.
def self.cache_set_max size
vips_cache_set_max size
end
# Set the maximum amount of memory that libvips should use for the operation
# cache. Set 0 to disable the operation cache. The default is 100mb.
def self.cache_set_max_mem size
vips_cache_set_max_mem size
end
# Set the maximum number of files libvips should keep open in the
# operation cache. Set 0 to disable the operation cache. The default is
# 100.
def self.cache_set_max_files size
vips_cache_set_max_files size
end
# Set the size of the libvips worker pool. This defaults to the number of
# hardware threads on your computer. Set to 1 to disable threading.
def self.concurrency_set n
vips_concurrency_set n
end
# Enable or disable SIMD and the run-time compiler. This can give a nice
# speed-up, but can also be unstable on some systems or with some versions
# of the run-time compiler.
def self.vector_set enabled
vips_vector_set_enabled(enabled ? 1 : 0)
end
# Deprecated compatibility function.
#
# Don't use this, instead change GLib::logger.level.
def self.set_debug debug
if debug
GLib.logger.level = Logger::DEBUG
end
end
attach_function :version, :vips_version, [:int], :int
attach_function :version_string, :vips_version_string, [], :string
# True if this is at least libvips x.y
def self.at_least_libvips?(x, y)
major = version(0)
minor = version(1)
major > x || (major == x && minor >= y)
end
# Get a list of all supported file suffixes.
#
# @return [[String]] array of supported suffixes
def self.get_suffixes
# vips_foreign_get_suffixes() was added in libvips 8.8
return [] unless Vips.respond_to? :vips_foreign_get_suffixes
array = Vips.vips_foreign_get_suffixes
names = []
p = array
until (q = p.read_pointer).null?
suff = q.read_string
GLib.g_free q
names << suff unless names.include? suff
p += FFI::Type::POINTER.size
end
GLib.g_free array
names
end
LIBRARY_VERSION = Vips.version_string
# libvips has this arbitrary number as a sanity-check upper bound on image
# size. It's sometimes useful to know when calculating scale factors.
MAX_COORD = 10000000
end
require "vips/object"
require "vips/operation"
require "vips/image"
require "vips/mutableimage"
require "vips/interpolate"
require "vips/region"
require "vips/version"
require "vips/connection"
require "vips/source"
require "vips/sourcecustom"
require "vips/target"
require "vips/targetcustom"
|