1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
#
# rational.rb -
# $Release Version: 0.5 $
# $Revision: 1.7 $
# $Date: 1999/08/24 12:49:28 $
# by Keiju ISHITSUKA(SHL Japan Inc.)
#
# --
# Usage:
# class Rational < Numeric
# (include Compareable)
#
# Rational(a, b) --> a/b
#
# Rational::+
# Rational::-
# Rational::*
# Rational::/
# Rational::**
# Rational::%
# Rational::divmod
# Rational::abs
# Rational::<=>
# Rational::to_i
# Rational::to_f
# Rational::to_s
#
# Integer::gcd
# Integer::lcm
# Integer::gcdlcm
# Integer::to_r
#
# Fixnum::**
# Bignum::**
#
#
def Rational(a, b = 1)
if a.kind_of?(Rational) && b == 1
a
else
Rational.reduce(a, b)
end
end
class Rational < Numeric
@RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
def Rational.reduce(num, den = 1)
raise ZeroDivisionError, "denometor is 0" if den == 0
if den < 0
num = -num
den = -den
end
gcd = num.gcd(den)
num = num.div(gcd)
den = den.div(gcd)
if den == 1 && defined?(Unify)
num
else
new!(num, den)
end
end
def Rational.new!(num, den = 1)
new(num, den)
end
def initialize(num, den)
if den < 0
num = -num
den = -den
end
if num.kind_of?(Integer) and den.kind_of?(Integer)
@numerator = num
@denominator = den
else
@numerator = num.to_i
@denominator = den.to_i
end
end
def + (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num + num_a, @denominator * a.denominator)
elsif a.kind_of?(Integer)
self + Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) + a
else
x , y = a.coerce(self)
x + y
end
end
def - (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num - num_a, @denominator*a.denominator)
elsif a.kind_of?(Integer)
self - Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) - a
else
x , y = a.coerce(self)
x - y
end
end
def * (a)
if a.kind_of?(Rational)
num = @numerator * a.numerator
den = @denominator * a.denominator
Rational(num, den)
elsif a.kind_of?(Integer)
self * Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) * a
else
x , y = a.coerce(self)
x * y
end
end
def / (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
den = @denominator * a.numerator
Rational(num, den)
elsif a.kind_of?(Integer)
raise ZeroDivisionError, "devided by 0" if a == 0
self / Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) / a
else
x , y = a.coerce(self)
x / y
end
end
def ** (other)
if other.kind_of?(Rational)
Float(self) ** other
elsif other.kind_of?(Integer)
if other > 0
num = @numerator ** other
den = @denominator ** other
elsif other < 0
num = @denominator ** -other
den = @numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational.new!(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x , y = other.coerce(self)
x ** y
end
end
def % (other)
value = (self / other).to_i
return self - other * value
end
def divmod(other)
value = (self / other).to_i
return value, self - other * value
end
def abs
if @numerator > 0
Rational.new!(@numerator, @denominator)
else
Rational.new!(-@numerator, @denominator)
end
end
def <=> (other)
if other.kind_of?(Rational)
num = @numerator * other.denominator
num_a = other.numerator * @denominator
v = num - num_a
if v > 0
return 1
elsif v < 0
return -1
else
return 0
end
elsif other.kind_of?(Integer)
return self <=> Rational.new!(other, 1)
elsif other.kind_of?(Float)
return Float(self) <=> other
else
x , y = other.coerce(self)
return x <=> y
end
end
def coerce(other)
if other.kind_of?(Float)
return other, self.to_f
elsif other.kind_of?(Integer)
return Rational.new!(other, 1), self
else
super
end
end
def to_i
Integer(@numerator.div(@denominator))
end
def to_f
@numerator.to_f/@denominator.to_f
end
def to_s
if @denominator == 1
@numerator.to_s
else
@numerator.to_s+"/"+@denominator.to_s
end
end
def to_r
self
end
def inspect
sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
end
def hash
@numerator ^ @denominator
end
attr :numerator
attr :denominator
private :initialize
end
class Integer
def numerator
self
end
def denomerator
1
end
def to_r
Rational(self, 1)
end
def gcd(n)
m = self.abs
n = n.abs
return n if m == 0
return m if n == 0
b = 0
while n[0] == 0 && m[0] == 0
b += 1; n >>= 1; m >>= 1
end
m >>= 1 while m[0] == 0
n >>= 1 while n[0] == 0
while m != n
m, n = n, m if n > m
m -= n; m >>= 1 while m[0] == 0
end
m << b
end
def gcd2(int)
a = self.abs
b = int.abs
a, b = b, a if a < b
while b != 0
void, a = a.divmod(b)
a, b = b, a
end
return a
end
def lcm(int)
a = self.abs
b = int.abs
gcd = a.gcd(b)
(a.div(gcd)) * b
end
def gcdlcm(int)
a = self.abs
b = int.abs
gcd = a.gcd(b)
return gcd, (a.div(gcd)) * b
end
end
class Fixnum
alias div! /;
def div(other)
if other.kind_of?(Fixnum)
self.div!(other)
elsif other.kind_of?(Bignum)
x, y = other.coerce(self)
x.div!(y)
else
x, y = other.coerce(self)
x / y
end
end
# alias divmod! divmod
if not defined? Complex
alias power! **;
end
# def rdiv(other)
# if other.kind_of?(Fixnum)
# Rational(self, other)
# elsif
# x, y = other.coerce(self)
# if defined?(x.div())
# x.div(y)
# else
# x / y
# end
# end
# end
def rdiv(other)
Rational.new!(self,1) / other
end
def rpower (other)
if other >= 0
self.power!(other)
else
Rational.new!(self,1)**other
end
end
if not defined? Complex
alias ** rpower
end
end
class Bignum
alias div! /;
alias div /;
alias divmod! divmod
if not defined? power!
alias power! **
end
def rdiv(other)
Rational.new!(self,1) / other
end
def rpower (other)
if other >= 0
self.power!(other)
else
Rational.new!(self, 1)**other
end
end
if not defined? Complex
alias ** rpower
end
end
|