1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#
# This demonstration illustrates how Tcl/Tk can be used to construct
# simulations of physical systems.
# (called by 'widget')
#
# based on Tcl/Tk8.5a2 widget demos
# destroy toplevel widget for this demo script
if defined?($pendulum_demo) && $pendulum_demo
$pendulum_demo.destroy
$pendulum_demo = nil
end
# create toplevel widget
$pendulum_demo = TkToplevel.new {|w|
title("Pendulum Animation Demonstration")
iconname("pendulum")
positionWindow(w)
}
# create label
msg = TkLabel.new($pendulum_demo) {
font $font
wraplength '4i'
justify 'left'
text 'ΥǥϡʪϤΥߥ졼˴ؤ褦ʥ˥¹Ԥ뤿 Ruby/Tk ɤΤ褦Ѥ뤳ȤǤ뤫Ƥޤ¦ΥХñʿҤǤʪϼΤΥեɽǤΤФ¦ΥХϷϤΰ֤Υաʳ®٤ȳ٤ȤץåȤΡˤˤʤäƤޤ¦ΥХǥåӥɥåԤäƿҤνŤΰ֤ѤƤߤƤ'
}
msg.pack('side'=>'top')
# create frame
TkFrame.new($pendulum_demo) {|frame|
TkButton.new(frame) {
#text 'λ'
text 'Ĥ'
command proc{
tmppath = $pendulum_demo
$pendulum_demo = nil
tmppath.destroy
}
}.pack('side'=>'left', 'expand'=>'yes')
TkButton.new(frame) {
text 'ɻ'
command proc{showCode 'pendulum'}
}.pack('side'=>'left', 'expand'=>'yes')
}.pack('side'=>'bottom', 'fill'=>'x', 'pady'=>'2m')
# animated wave
class PendulumAnimationDemo
def initialize(frame)
# Create some structural widgets
pane = TkPanedWindow.new(frame).pack(:fill=>:both, :expand=>true)
pane.add(@lf1 = TkLabelFrame.new(pane, :text=>'Pendulum Simulation'))
pane.add(@lf2 = TkLabelFrame.new(pane, :text=>'Phase Space'))
# Create the canvas containing the graphical representation of the
# simulated system.
@c = TkCanvas.new(@lf1, :width=>320, :height=>200, :background=>'white',
:borderwidth=>2, :relief=>:sunken)
TkcText.new(@c, 5, 5, :anchor=>:nw,
:text=>'Click to Adjust Bob Start Position')
# Coordinates of these items don't matter; they will be set properly below
@plate = TkcLine.new(@c, 0, 25, 320, 25, :width=>2, :fill=>'grey50')
@rod = TkcLine.new(@c, 1, 1, 1, 1, :width=>3, :fill=>'black')
@bob = TkcOval.new(@c, 1, 1, 2, 2,
:width=>3, :fill=>'yellow', :outline=>'black')
TkcOval.new(@c, 155, 20, 165, 30, :fill=>'grey50', :outline=>'')
# pack
@c.pack(:fill=>:both, :expand=>true)
# Create the canvas containing the phase space graph; this consists of
# a line that gets gradually paler as it ages, which is an extremely
# effective visual trick.
@k = TkCanvas.new(@lf2, :width=>320, :height=>200, :background=>'white',
:borderwidth=>2, :relief=>:sunken)
@y_axis = TkcLine.new(@k, 160, 200, 160, 0, :fill=>'grey75', :arrow=>:last)
@x_axis = TkcLine.new(@k, 0, 100, 320, 100, :fill=>'grey75', :arrow=>:last)
@graph = {}
90.step(0, -10){|i|
# Coordinates of these items don't matter;
# they will be set properly below
@graph[i] = TkcLine.new(@k, 0, 0, 1, 1, :smooth=>true, :fill=>"grey#{i}")
}
# labels
@label_theta = TkcText.new(@k, 0, 0, :anchor=>:ne,
:text=>'q', :font=>'Symbol 8')
@label_dtheta = TkcText.new(@k, 0, 0, :anchor=>:ne,
:text=>'dq', :font=>'Symbol 8')
# pack
@k.pack(:fill=>:both, :expand=>true)
# Initialize some variables
@points = []
@theta = 45.0
@dTheta = 0.0
@length = 150
# init display
showPendulum
# animation loop
@timer = TkTimer.new(15){ repeat }
# binding
@c.bindtags_unshift(btag = TkBindTag.new)
btag.bind('Destroy'){ @timer.stop }
btag.bind('1', proc{|x, y| @timer.stop; showPendulum(x, y)}, '%x %y')
btag.bind('B1-Motion', proc{|x, y| showPendulum(x, y)}, '%x %y')
btag.bind('ButtonRelease-1',
proc{|x, y| showPendulum(x, y); @timer.start }, '%x %y')
btag.bind('Configure', proc{|w| @plate.coords(0, 25, w, 25)}, '%w')
@k.bind('Configure', proc{|h, w|
@psh = h/2;
@psw = w/2
@x_axis.coords(2, @psh, w-2, @psh)
@y_axis.coords(@psw, h-2, @psw, 2)
@label_theta.coords(@psw-4, 6)
@label_dtheta.coords(w-6, @psh+4)
}, '%h %w')
# animation start
@timer.start(500)
end
# This procedure makes the pendulum appear at the correct place on the
# canvas. If the additional arguments x, y are passed instead of computing
# the position of the pendulum from the length of the pendulum rod and its
# angle, the length and angle are computed in reverse from the given
# location (which is taken to be the centre of the pendulum bob.)
def showPendulum(x=nil, y=nil)
if x && y && (x != 160 || y != 25)
@dTheta = 0.0
x2 = x - 160
y2 = y - 25
@length = Math.hypot(x2, y2)
@theta = Math.atan2(x2,y2)*180/Math::PI
else
angle = @theta*Math::PI/180
x = 160 + @length*Math.sin(angle)
y = 25 + @length*Math.cos(angle)
end
@rod.coords(160, 25, x, y)
@bob.coords(x-15, y-15, x+15, y+15)
end
# Update the phase-space graph according to the current angle and the
# rate at which the angle is changing (the first derivative with
# respect to time.)
def showPhase
@points << @theta + @psw << -20*@dTheta + @psh
if @points.length > 100
@points = @points[-100..-1]
end
(0...100).step(10){|i|
first = - i
last = 11 - i
last = -1 if last >= 0
next if first > last
lst = @points[first..last]
@graph[i].coords(lst) if lst && lst.length >= 4
}
end
# This procedure is the "business" part of the simulation that does
# simple numerical integration of the formula for a simple rotational
# pendulum.
def recomputeAngle
scaling = 3000.0/@length/@length
# To estimate the integration accurately, we really need to
# compute the end-point of our time-step. But to do *that*, we
# need to estimate the integration accurately! So we try this
# technique, which is inaccurate, but better than doing it in a
# single step. What we really want is bound up in the
# differential equation:
# .. - sin theta
# theta + theta = -----------
# length
# But my math skills are not good enough to solve this!
# first estimate
firstDDTheta = -Math.sin(@theta * Math::PI/180) * scaling
midDTheta = @dTheta + firstDDTheta
midTheta = @theta + (@dTheta + midDTheta)/2
# second estimate
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
midDTheta = @dTheta + (firstDDTheta + midDDTheta)/2
midTheta = @theta + (@dTheta + midDTheta)/2
# Now we do a double-estimate approach for getting the final value
# first estimate
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
lastDTheta = midDTheta + midDDTheta
lastTheta = midTheta + (midDTheta+ lastDTheta)/2
# second estimate
lastDDTheta = -Math.sin(lastTheta * Math::PI/180) * scaling
lastDTheta = midDTheta + (midDDTheta + lastDDTheta)/2
lastTheta = midTheta + (midDTheta + lastDTheta)/2
# Now put the values back in our globals
@dTheta = lastDTheta
@theta = lastTheta
end
# This method ties together the simulation engine and the graphical
# display code that visualizes it.
def repeat
# Simulate
recomputeAngle
# Update the display
showPendulum
showPhase
end
end
# Start the animation processing
PendulumAnimationDemo.new($pendulum_demo)
|