1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
# frozen_string_literal: false
require 'test/unit'
class ComplexRational_Test < Test::Unit::TestCase
def test_rat_srat
skip unless defined?(Rational)
c = SimpleRat(1,3)
cc = Rational(3,2)
assert_kind_of(Numeric, c)
assert_kind_of(Numeric, cc)
assert_instance_of(SimpleRat, c)
assert_instance_of(Rational, cc)
assert_equal(SimpleRat(1,3), +c)
assert_equal(SimpleRat(-1,3), -c)
assert_equal(SimpleRat(7,3), c + 2)
assert_equal(SimpleRat(-5,3), c - 2)
assert_equal(SimpleRat(2,3), c * 2)
assert_equal(SimpleRat(1,6), c / 2)
assert_equal(SimpleRat(1,9), c ** 2)
assert_equal(-1, c <=> 2)
assert_equal(SimpleRat(7,3), 2 + c)
assert_equal(SimpleRat(5,3), 2 - c)
assert_equal(SimpleRat(2,3), 2 * c)
assert_equal(SimpleRat(6,1), 2 / c)
assert_in_delta(1.2599, 2 ** c, 0.001)
assert_equal(1, 2 <=> c)
assert_equal(SimpleRat(11,6), c + cc)
assert_equal(SimpleRat(-7,6), c - cc)
assert_equal(SimpleRat(1,2), c * cc)
assert_equal(SimpleRat(2,9), c / cc)
assert_in_delta(0.1924, c ** cc, 0.001)
assert_equal(-1, c <=> cc)
assert_equal(SimpleRat(11,6), cc + c)
assert_equal(SimpleRat(7,6), cc - c)
assert_equal(SimpleRat(1,2), cc * c)
assert_equal(SimpleRat(9,2), cc / c)
assert_in_delta(1.1447, cc ** c, 0.001)
assert_equal(1, cc <=> c)
assert_equal(SimpleRat, (+c).class)
assert_equal(SimpleRat, (-c).class)
assert_equal(SimpleRat, (c + 2).class)
assert_equal(SimpleRat, (c - 2).class)
assert_equal(SimpleRat, (c * 2).class)
assert_equal(SimpleRat, (c / 2).class)
assert_equal(SimpleRat, (c ** 2).class)
assert_equal(SimpleRat, (2 + c).class)
assert_equal(SimpleRat, (2 - c).class)
assert_equal(SimpleRat, (2 * c).class)
assert_equal(SimpleRat, (2 / c).class)
assert_equal(Float, (2 ** c).class)
assert_equal(SimpleRat, (c + cc).class)
assert_equal(SimpleRat, (c - cc).class)
assert_equal(SimpleRat, (c * cc).class)
assert_equal(SimpleRat, (c / cc).class)
assert_equal(Float, (c ** cc).class)
assert_equal(SimpleRat, (cc + c).class)
assert_equal(SimpleRat, (cc - c).class)
assert_equal(SimpleRat, (cc * c).class)
assert_equal(SimpleRat, (cc / c).class)
assert_equal(Float, (cc ** c).class)
assert_equal(0, Rational(2,3) <=> SimpleRat(2,3))
assert_equal(0, SimpleRat(2,3) <=> Rational(2,3))
assert_equal(Rational(2,3), SimpleRat(2,3))
assert_equal(SimpleRat(2,3), Rational(2,3))
assert_equal(SimpleRat, (c + 0).class)
assert_equal(SimpleRat, (c - 0).class)
assert_equal(SimpleRat, (c * 0).class)
assert_equal(SimpleRat, (c * 1).class)
assert_equal(SimpleRat, (0 + c).class)
assert_equal(SimpleRat, (0 - c).class)
assert_equal(SimpleRat, (0 * c).class)
assert_equal(SimpleRat, (1 * c).class)
end
def test_comp_srat
skip unless defined?(Rational)
c = Complex(SimpleRat(2,3),SimpleRat(1,2))
cc = Complex(Rational(3,2),Rational(2,1))
assert_equal(Complex(SimpleRat(2,3),SimpleRat(1,2)), +c)
assert_equal(Complex(SimpleRat(-2,3),SimpleRat(-1,2)), -c)
assert_equal(Complex(SimpleRat(8,3),SimpleRat(1,2)), c + 2)
assert_equal(Complex(SimpleRat(-4,3),SimpleRat(1,2)), c - 2)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(1,1)), c * 2)
assert_equal(Complex(SimpleRat(1,3),SimpleRat(1,4)), c / 2)
assert_equal(Complex(SimpleRat(7,36),SimpleRat(2,3)), c ** 2)
assert_nil(c <=> 2)
assert_equal(Complex(SimpleRat(8,3),SimpleRat(1,2)), 2 + c)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(-1,2)), 2 - c)
assert_equal(Complex(SimpleRat(4,3),SimpleRat(1,1)), 2 * c)
assert_equal(Complex(SimpleRat(48,25),SimpleRat(-36,25)), 2 / c)
r = 2 ** c
assert_in_delta(1.4940, r.real, 0.001)
assert_in_delta(0.5392, r.imag, 0.001)
assert_nil(2 <=> c)
assert_equal(Complex(SimpleRat(13,6),SimpleRat(5,2)), c + cc)
assert_equal(Complex(SimpleRat(-5,6),SimpleRat(-3,2)), c - cc)
assert_equal(Complex(SimpleRat(0,1),SimpleRat(25,12)), c * cc)
assert_equal(Complex(SimpleRat(8,25),SimpleRat(-7,75)), c / cc)
r = c ** cc
assert_in_delta(0.1732, r.real, 0.001)
assert_in_delta(0.1186, r.imag, 0.001)
assert_nil(c <=> cc)
assert_equal(Complex(SimpleRat(13,6),SimpleRat(5,2)), cc + c)
assert_equal(Complex(SimpleRat(5,6),SimpleRat(3,2)), cc - c)
assert_equal(Complex(SimpleRat(0,1),SimpleRat(25,12)), cc * c)
assert_equal(Complex(SimpleRat(72,25),SimpleRat(21,25)), cc / c)
r = cc ** c
assert_in_delta(0.5498, r.real, 0.001)
assert_in_delta(1.0198, r.imag, 0.001)
assert_nil(cc <=> c)
assert_equal([SimpleRat,SimpleRat],
(+c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(-c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c + 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c / 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c ** 2).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c + cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c / cc).instance_eval{[real.class, imag.class]})
assert_equal([Float,Float],
(c ** cc).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc + c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc - c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc * c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(cc / c).instance_eval{[real.class, imag.class]})
assert_equal([Float,Float],
(cc ** c).instance_eval{[real.class, imag.class]})
assert_equal(Complex(SimpleRat(2,3),SimpleRat(3,2)),
Complex(Rational(2,3),Rational(3,2)))
assert_equal(Complex(Rational(2,3),Rational(3,2)),
Complex(SimpleRat(2,3),SimpleRat(3,2)))
assert_equal([SimpleRat,SimpleRat],
(c + 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c - 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 0).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(c * 1).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 + c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 - c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(0 * c).instance_eval{[real.class, imag.class]})
assert_equal([SimpleRat,SimpleRat],
(1 * c).instance_eval{[real.class, imag.class]})
end
end
def SimpleRat(*a) SimpleRat.new(*a) end
class SimpleRat < Numeric
def initialize(num, den = 1)
if den == 0
raise ZeroDivisionError, "divided by zero"
end
if den < 0
num = -num
den = -den
end
gcd = num.gcd(den)
@num = num.div(gcd)
@den = den.div(gcd)
end
def numerator() @num end
def denominator() @den end
def +@() self end
def -@() self.class.new(-@num, @den) end
def +(o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
self.class.new(a + b, @den * o.denominator)
when Integer
self + self.class.new(o)
when Float
to_f + o
else
x, y = o.coerce(self)
x + y
end
end
def -(o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
self.class.new(a - b, @den * o.denominator)
when Integer
self - self.class.new(o)
when Float
to_f - o
else
x, y = o.coerce(self)
x - y
end
end
def *(o)
case o
when SimpleRat, Rational
a = @num * o.numerator
b = @den * o.denominator
self.class.new(a, b)
when Integer
self * self.class.new(o)
when Float
to_f * o
else
x, y = o.coerce(self)
x * y
end
end
def quo(o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = @den * o.numerator
self.class.new(a, b)
when Integer
if o == 0
raise ZeroDivisionError, "divided by zero"
end
self.quo(self.class.new(o))
when Float
to_f.quo(o)
else
x, y = o.coerce(self)
x.quo(y)
end
end
alias / quo
def floor
@num.div(@den)
end
def ceil
-((-@num).div(@den))
end
def truncate
if @num < 0
return -((-@num).div(@den))
end
@num.div(@den)
end
alias to_i truncate
def round
if @num < 0
num = -@num
num = num * 2 + @den
den = @den * 2
-(num.div(den))
else
num = @num * 2 + @den
den = @den * 2
num.div(den)
end
end
def div(o) (self / o).floor end
def quot(o) (self / o).truncate end
def modulo(o)
q = div(o)
self - o * q
end
def remainder(o)
q = quot(o)
self - o * q
end
alias % modulo
def divmod(o) [div(o), modulo(o)] end
def quotrem(o) [quot(o), remainder(o)] end
def **(o)
case o
when SimpleRat, Rational
Float(self) ** o
when Integer
if o > 0
a = @num ** o
b = @den ** o
elsif o < 0
a = @den ** -o
b = @num ** -o
else
a = b = 1
end
self.class.new(a, b)
when Float
to_f ** o
else
x, y = o.coerce(self)
x ** y
end
end
def <=>(o)
case o
when SimpleRat, Rational
a = @num * o.denominator
b = o.numerator * @den
return a <=> b
when Integer
self <=> self.class.new(o)
when Float
to_f <=> o
else
x, y = o.coerce(self)
x <=> y
end
end
def ==(o)
begin
(self <=> o) == 0
rescue
false
end
end
def coerce(o)
case o
when Rational
[self.class.new(o.numerator, o.denominator), self]
when Integer
[self.class.new(o), self]
when Float
[o, self.to_f]
else
super
end
end
def hash() @num.hash ^ @den.hash end
def to_f() @num.to_f / @den.to_f end
def to_r() self end
def to_s() format('%s/%s', @num, @den) end
def inspect() format('#SR(%s)', to_s) end
def marshal_dump() [@num, @den] end
def marshal_load(a) @num, @den = a end
end
|