1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
|
// This file is a fragment of the yjit.o compilation unit. See yjit.c.
//
// Note that the definition for some of these functions don't specify
// static inline, but their declaration in yjit_asm.h do. The resulting
// linkage is the same as if they both specify. The relevant sections in
// N1256 is 6.2.2p4, 6.2.2p5, and 6.7.4p5.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdint.h>
#include <assert.h>
#include <errno.h>
// For mmapp(), sysconf()
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
#include "yjit_asm.h"
// Compute the number of bits needed to encode a signed value
uint32_t sig_imm_size(int64_t imm)
{
// Compute the smallest size this immediate fits in
if (imm >= INT8_MIN && imm <= INT8_MAX)
return 8;
if (imm >= INT16_MIN && imm <= INT16_MAX)
return 16;
if (imm >= INT32_MIN && imm <= INT32_MAX)
return 32;
return 64;
}
// Compute the number of bits needed to encode an unsigned value
uint32_t unsig_imm_size(uint64_t imm)
{
// Compute the smallest size this immediate fits in
if (imm <= UINT8_MAX)
return 8;
else if (imm <= UINT16_MAX)
return 16;
else if (imm <= UINT32_MAX)
return 32;
return 64;
}
x86opnd_t mem_opnd(uint32_t num_bits, x86opnd_t base_reg, int32_t disp)
{
bool is_iprel = base_reg.as.reg.reg_type == REG_IP;
x86opnd_t opnd = {
OPND_MEM,
num_bits,
.as.mem = { base_reg.as.reg.reg_no, 0, 0, false, is_iprel, disp }
};
return opnd;
}
x86opnd_t mem_opnd_sib(uint32_t num_bits, x86opnd_t base_reg, x86opnd_t index_reg, int32_t scale, int32_t disp)
{
uint8_t scale_exp;
switch (scale) {
case 8:
scale_exp = 3;
break;
case 4:
scale_exp = 2;
break;
case 2:
scale_exp = 1;
break;
case 1:
scale_exp = 0;
break;
default:
rb_bug("yjit: scale not one of 1,2,4,8");
break;
}
bool is_iprel = base_reg.as.reg.reg_type == REG_IP;
x86opnd_t opnd = {
OPND_MEM,
num_bits,
.as.mem = {
.base_reg_no = base_reg.as.reg.reg_no,
.idx_reg_no = index_reg.as.reg.reg_no,
.has_idx = 1,
.scale_exp = scale_exp,
.is_iprel = is_iprel,
.disp = disp
}
};
return opnd;
}
static x86opnd_t resize_opnd(x86opnd_t opnd, uint32_t num_bits)
{
assert (num_bits % 8 == 0);
x86opnd_t sub = opnd;
sub.num_bits = num_bits;
return sub;
}
x86opnd_t imm_opnd(int64_t imm)
{
x86opnd_t opnd = {
OPND_IMM,
sig_imm_size(imm),
.as.imm = imm
};
return opnd;
}
x86opnd_t const_ptr_opnd(const void *ptr)
{
x86opnd_t opnd = {
OPND_IMM,
64,
.as.unsig_imm = (uint64_t)ptr
};
return opnd;
}
// Align the current write position to a multiple of bytes
static uint8_t *align_ptr(uint8_t *ptr, uint32_t multiple)
{
// Compute the pointer modulo the given alignment boundary
uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;
// If the pointer is already aligned, stop
if (rem == 0)
return ptr;
// Pad the pointer by the necessary amount to align it
uint32_t pad = multiple - rem;
return ptr + pad;
}
// Allocate a block of executable memory
static uint8_t *alloc_exec_mem(uint32_t mem_size)
{
#ifndef _WIN32
uint8_t *mem_block;
// On Linux
#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
// Align the requested address to page size
uint32_t page_size = (uint32_t)sysconf(_SC_PAGESIZE);
uint8_t *req_addr = align_ptr((uint8_t*)&alloc_exec_mem, page_size);
do {
// Try to map a chunk of memory as executable
mem_block = (uint8_t*)mmap(
(void*)req_addr,
mem_size,
PROT_READ | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
-1,
0
);
// If we succeeded, stop
if (mem_block != MAP_FAILED) {
break;
}
// +4MB
req_addr += 4 * 1024 * 1024;
} while (req_addr < (uint8_t*)&alloc_exec_mem + INT32_MAX);
// On MacOS and other platforms
#else
// Try to map a chunk of memory as executable
mem_block = (uint8_t*)mmap(
(void*)alloc_exec_mem,
mem_size,
PROT_READ | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
#endif
// Fallback
if (mem_block == MAP_FAILED) {
// Try again without the address hint (e.g., valgrind)
mem_block = (uint8_t*)mmap(
NULL,
mem_size,
PROT_READ | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0
);
}
// Check that the memory mapping was successful
if (mem_block == MAP_FAILED) {
perror("mmap call failed");
exit(-1);
}
codeblock_t block;
codeblock_t *cb = █
cb_init(cb, mem_block, mem_size);
// Fill the executable memory with PUSH DS (0x1E) so that
// executing uninitialized memory will fault with #UD in
// 64-bit mode.
cb_mark_all_writeable(cb);
memset(mem_block, 0x1E, mem_size);
cb_mark_all_executable(cb);
return mem_block;
#else
// Windows not supported for now
return NULL;
#endif
}
// Initialize a code block object
void cb_init(codeblock_t *cb, uint8_t *mem_block, uint32_t mem_size)
{
assert (mem_block);
cb->mem_block_ = mem_block;
cb->mem_size = mem_size;
cb->write_pos = 0;
cb->num_labels = 0;
cb->num_refs = 0;
cb->current_aligned_write_pos = ALIGNED_WRITE_POSITION_NONE;
}
// Set the current write position
void cb_set_pos(codeblock_t *cb, uint32_t pos)
{
// Assert here since while assembler functions do bounds checking, there is
// nothing stopping users from taking out an out-of-bounds pointer and
// doing bad accesses with it.
assert (pos < cb->mem_size);
cb->write_pos = pos;
}
// Align the current write position to a multiple of bytes
void cb_align_pos(codeblock_t *cb, uint32_t multiple)
{
// Compute the pointer modulo the given alignment boundary
uint8_t *ptr = cb_get_write_ptr(cb);
uint8_t *aligned_ptr = align_ptr(ptr, multiple);
const uint32_t write_pos = cb->write_pos;
// Pad the pointer by the necessary amount to align it
ptrdiff_t pad = aligned_ptr - ptr;
cb_set_pos(cb, write_pos + (int32_t)pad);
}
// Set the current write position from a pointer
void cb_set_write_ptr(codeblock_t *cb, uint8_t *code_ptr)
{
intptr_t pos = code_ptr - cb->mem_block_;
assert (pos < cb->mem_size);
cb_set_pos(cb, (uint32_t)pos);
}
// Get a direct pointer into the executable memory block
uint8_t *cb_get_ptr(const codeblock_t *cb, uint32_t index)
{
if (index < cb->mem_size) {
return &cb->mem_block_[index];
}
else {
return NULL;
}
}
// Get a direct pointer to the current write position
uint8_t *cb_get_write_ptr(const codeblock_t *cb)
{
return cb_get_ptr(cb, cb->write_pos);
}
// Write a byte at the current position
void cb_write_byte(codeblock_t *cb, uint8_t byte)
{
assert (cb->mem_block_);
if (cb->write_pos < cb->mem_size) {
cb_mark_position_writeable(cb, cb->write_pos);
cb->mem_block_[cb->write_pos] = byte;
cb->write_pos++;
}
else {
cb->dropped_bytes = true;
}
}
// Write multiple bytes starting from the current position
void cb_write_bytes(codeblock_t *cb, uint32_t num_bytes, ...)
{
va_list va;
va_start(va, num_bytes);
for (uint32_t i = 0; i < num_bytes; ++i)
{
uint8_t byte = va_arg(va, int);
cb_write_byte(cb, byte);
}
va_end(va);
}
// Write a signed integer over a given number of bits at the current position
void cb_write_int(codeblock_t *cb, uint64_t val, uint32_t num_bits)
{
assert (num_bits > 0);
assert (num_bits % 8 == 0);
// Switch on the number of bits
switch (num_bits) {
case 8:
cb_write_byte(cb, (uint8_t)val);
break;
case 16:
cb_write_bytes(
cb,
2,
(uint8_t)((val >> 0) & 0xFF),
(uint8_t)((val >> 8) & 0xFF)
);
break;
case 32:
cb_write_bytes(
cb,
4,
(uint8_t)((val >> 0) & 0xFF),
(uint8_t)((val >> 8) & 0xFF),
(uint8_t)((val >> 16) & 0xFF),
(uint8_t)((val >> 24) & 0xFF)
);
break;
default:
{
// Compute the size in bytes
uint32_t num_bytes = num_bits / 8;
// Write out the bytes
for (uint32_t i = 0; i < num_bytes; ++i)
{
uint8_t byte_val = (uint8_t)(val & 0xFF);
cb_write_byte(cb, byte_val);
val >>= 8;
}
}
}
}
// Allocate a new label with a given name
uint32_t cb_new_label(codeblock_t *cb, const char *name)
{
//if (hasASM)
// writeString(to!string(label) ~ ":");
assert (cb->num_labels < MAX_LABELS);
// Allocate the new label
uint32_t label_idx = cb->num_labels++;
// This label doesn't have an address yet
cb->label_addrs[label_idx] = 0;
cb->label_names[label_idx] = name;
return label_idx;
}
// Write a label at the current address
void cb_write_label(codeblock_t *cb, uint32_t label_idx)
{
assert (label_idx < MAX_LABELS);
cb->label_addrs[label_idx] = cb->write_pos;
}
// Add a label reference at the current write position
void cb_label_ref(codeblock_t *cb, uint32_t label_idx)
{
assert (label_idx < MAX_LABELS);
assert (cb->num_refs < MAX_LABEL_REFS);
// Keep track of the reference
cb->label_refs[cb->num_refs] = (labelref_t){ cb->write_pos, label_idx };
cb->num_refs++;
}
// Link internal label references
void cb_link_labels(codeblock_t *cb)
{
uint32_t orig_pos = cb->write_pos;
// For each label reference
for (uint32_t i = 0; i < cb->num_refs; ++i)
{
uint32_t ref_pos = cb->label_refs[i].pos;
uint32_t label_idx = cb->label_refs[i].label_idx;
assert (ref_pos < cb->mem_size);
assert (label_idx < MAX_LABELS);
uint32_t label_addr = cb->label_addrs[label_idx];
assert (label_addr < cb->mem_size);
// Compute the offset from the reference's end to the label
int64_t offset = (int64_t)label_addr - (int64_t)(ref_pos + 4);
cb_set_pos(cb, ref_pos);
cb_write_int(cb, offset, 32);
}
cb->write_pos = orig_pos;
// Clear the label positions and references
cb->num_labels = 0;
cb->num_refs = 0;
}
// Check if an operand needs a REX byte to be encoded
static bool rex_needed(x86opnd_t opnd)
{
if (opnd.type == OPND_NONE || opnd.type == OPND_IMM)
{
return false;
}
if (opnd.type == OPND_REG)
{
return (
opnd.as.reg.reg_no > 7 ||
(opnd.num_bits == 8 && opnd.as.reg.reg_no >= 4 && opnd.as.reg.reg_no <= 7)
);
}
if (opnd.type == OPND_MEM)
{
return (opnd.as.mem.base_reg_no > 7) || (opnd.as.mem.has_idx && opnd.as.mem.idx_reg_no > 7);
}
rb_bug("unreachable");
}
// Check if an SIB byte is needed to encode this operand
static bool sib_needed(x86opnd_t opnd)
{
if (opnd.type != OPND_MEM)
return false;
return (
opnd.as.mem.has_idx ||
opnd.as.mem.base_reg_no == RSP.as.reg.reg_no ||
opnd.as.mem.base_reg_no == R12.as.reg.reg_no
);
}
// Compute the size of the displacement field needed for a memory operand
static uint32_t disp_size(x86opnd_t opnd)
{
assert (opnd.type == OPND_MEM);
// If using RIP as the base, use disp32
if (opnd.as.mem.is_iprel)
{
return 32;
}
// Compute the required displacement size
if (opnd.as.mem.disp != 0)
{
uint32_t num_bits = sig_imm_size(opnd.as.mem.disp);
assert (num_bits <= 32 && "displacement does not fit in 32 bits");
// x86 can only encode 8-bit and 32-bit displacements
if (num_bits == 16)
num_bits = 32;;
return num_bits;
}
// If EBP or RBP or R13 is used as the base, displacement must be encoded
if (opnd.as.mem.base_reg_no == RBP.as.reg.reg_no ||
opnd.as.mem.base_reg_no == R13.as.reg.reg_no)
{
return 8;
}
return 0;
}
// Write the REX byte
static void cb_write_rex(
codeblock_t *cb,
bool w_flag,
uint8_t reg_no,
uint8_t idx_reg_no,
uint8_t rm_reg_no
)
{
// 0 1 0 0 w r x b
// w - 64-bit operand size flag
// r - MODRM.reg extension
// x - SIB.index extension
// b - MODRM.rm or SIB.base extension
uint8_t w = w_flag? 1:0;
uint8_t r = (reg_no & 8)? 1:0;
uint8_t x = (idx_reg_no & 8)? 1:0;
uint8_t b = (rm_reg_no & 8)? 1:0;
// Encode and write the REX byte
uint8_t rexByte = 0x40 + (w << 3) + (r << 2) + (x << 1) + (b);
cb_write_byte(cb, rexByte);
}
// Write an opcode byte with an embedded register operand
static void cb_write_opcode(codeblock_t *cb, uint8_t opcode, x86opnd_t reg)
{
// Write the reg field into the opcode byte
uint8_t op_byte = opcode | (reg.as.reg.reg_no & 7);
cb_write_byte(cb, op_byte);
}
// Encode an RM instruction
static void cb_write_rm(
codeblock_t *cb,
bool szPref,
bool rexW,
x86opnd_t r_opnd,
x86opnd_t rm_opnd,
uint8_t opExt,
uint32_t op_len,
...)
{
assert (op_len > 0 && op_len <= 3);
assert (r_opnd.type == OPND_REG || r_opnd.type == OPND_NONE);
// Flag to indicate the REX prefix is needed
bool need_rex = rexW || rex_needed(r_opnd) || rex_needed(rm_opnd);
// Flag to indicate SIB byte is needed
bool need_sib = sib_needed(r_opnd) || sib_needed(rm_opnd);
// Add the operand-size prefix, if needed
if (szPref == true)
cb_write_byte(cb, 0x66);
// Add the REX prefix, if needed
if (need_rex)
{
// 0 1 0 0 w r x b
// w - 64-bit operand size flag
// r - MODRM.reg extension
// x - SIB.index extension
// b - MODRM.rm or SIB.base extension
uint8_t w = rexW? 1:0;
uint8_t r;
if (r_opnd.type != OPND_NONE)
r = (r_opnd.as.reg.reg_no & 8)? 1:0;
else
r = 0;
uint8_t x;
if (need_sib && rm_opnd.as.mem.has_idx)
x = (rm_opnd.as.mem.idx_reg_no & 8)? 1:0;
else
x = 0;
uint8_t b;
if (rm_opnd.type == OPND_REG)
b = (rm_opnd.as.reg.reg_no & 8)? 1:0;
else if (rm_opnd.type == OPND_MEM)
b = (rm_opnd.as.mem.base_reg_no & 8)? 1:0;
else
b = 0;
// Encode and write the REX byte
uint8_t rex_byte = 0x40 + (w << 3) + (r << 2) + (x << 1) + (b);
cb_write_byte(cb, rex_byte);
}
// Write the opcode bytes to the code block
va_list va;
va_start(va, op_len);
for (uint32_t i = 0; i < op_len; ++i)
{
uint8_t byte = va_arg(va, int);
cb_write_byte(cb, byte);
}
va_end(va);
// MODRM.mod (2 bits)
// MODRM.reg (3 bits)
// MODRM.rm (3 bits)
assert (
!(opExt != 0xFF && r_opnd.type != OPND_NONE) &&
"opcode extension and register operand present"
);
// Encode the mod field
uint8_t mod;
if (rm_opnd.type == OPND_REG)
{
mod = 3;
}
else
{
uint32_t dsize = disp_size(rm_opnd);
if (dsize == 0 || rm_opnd.as.mem.is_iprel)
mod = 0;
else if (dsize == 8)
mod = 1;
else if (dsize == 32)
mod = 2;
else
rb_bug("unreachable");
}
// Encode the reg field
uint8_t reg;
if (opExt != 0xFF)
reg = opExt;
else if (r_opnd.type == OPND_REG)
reg = r_opnd.as.reg.reg_no & 7;
else
reg = 0;
// Encode the rm field
uint8_t rm;
if (rm_opnd.type == OPND_REG)
{
rm = rm_opnd.as.reg.reg_no & 7;
}
else
{
if (need_sib)
rm = 4;
else
rm = rm_opnd.as.mem.base_reg_no & 7;
}
// Encode and write the ModR/M byte
uint8_t rm_byte = (mod << 6) + (reg << 3) + (rm);
cb_write_byte(cb, rm_byte);
// Add the SIB byte, if needed
if (need_sib)
{
// SIB.scale (2 bits)
// SIB.index (3 bits)
// SIB.base (3 bits)
assert (rm_opnd.type == OPND_MEM);
// Encode the scale value
uint8_t scale = rm_opnd.as.mem.scale_exp;
// Encode the index value
uint8_t index;
if (!rm_opnd.as.mem.has_idx)
index = 4;
else
index = rm_opnd.as.mem.idx_reg_no & 7;
// Encode the base register
uint8_t base = rm_opnd.as.mem.base_reg_no & 7;
// Encode and write the SIB byte
uint8_t sib_byte = (scale << 6) + (index << 3) + (base);
cb_write_byte(cb, sib_byte);
}
// Add the displacement
if (rm_opnd.type == OPND_MEM)
{
uint32_t dsize = disp_size(rm_opnd);
if (dsize > 0)
cb_write_int(cb, rm_opnd.as.mem.disp, dsize);
}
}
// Encode a mul-like single-operand RM instruction
static void write_rm_unary(
codeblock_t *cb,
const char *mnem,
uint8_t opMemReg8,
uint8_t opMemRegPref,
uint8_t opExt,
x86opnd_t opnd)
{
// Write a disassembly string
//cb.writeASM(mnem, opnd);
// Check the size of opnd0
uint32_t opndSize;
if (opnd.type == OPND_REG || opnd.type == OPND_MEM)
opndSize = opnd.num_bits;
else
rb_bug("yjit: invalid operand");
assert (opndSize == 8 || opndSize == 16 || opndSize == 32 || opndSize == 64);
bool szPref = opndSize == 16;
bool rexW = opndSize == 64;
if (opndSize == 8)
cb_write_rm(cb, false, false, NO_OPND, opnd, opExt, 1, opMemReg8);
else
cb_write_rm(cb, szPref, rexW, NO_OPND, opnd, opExt, 1, opMemRegPref);
}
// Encode an add-like RM instruction with multiple possible encodings
static void cb_write_rm_multi(
codeblock_t *cb,
const char *mnem,
uint8_t opMemReg8,
uint8_t opMemRegPref,
uint8_t opRegMem8,
uint8_t opRegMemPref,
uint8_t opMemImm8,
uint8_t opMemImmSml,
uint8_t opMemImmLrg,
uint8_t opExtImm,
x86opnd_t opnd0,
x86opnd_t opnd1)
{
assert (opnd0.type == OPND_REG || opnd0.type == OPND_MEM);
/*
// Write disassembly string
if (!opnd1.isNone)
cb.writeASM(mnem, opnd0, opnd1);
else
cb.writeASM(mnem, opnd0);
*/
// Check the size of opnd0
uint32_t opndSize = opnd0.num_bits;
// Check the size of opnd1
if (opnd1.type == OPND_REG || opnd1.type == OPND_MEM)
{
assert (opnd1.num_bits == opndSize && "operand size mismatch");
}
else if (opnd1.type == OPND_IMM)
{
assert (opnd1.num_bits <= opndSize);
}
assert (opndSize == 8 || opndSize == 16 || opndSize == 32 || opndSize == 64);
bool szPref = opndSize == 16;
bool rexW = opndSize == 64;
// R/M + Reg
if ((opnd0.type == OPND_MEM && opnd1.type == OPND_REG) ||
(opnd0.type == OPND_REG && opnd1.type == OPND_REG))
{
// R/M is opnd0
if (opndSize == 8)
cb_write_rm(cb, false, false, opnd1, opnd0, 0xFF, 1, opMemReg8);
else
cb_write_rm(cb, szPref, rexW, opnd1, opnd0, 0xFF, 1, opMemRegPref);
}
// Reg + R/M
else if (opnd0.type == OPND_REG && opnd1.type == OPND_MEM)
{
// R/M is opnd1
if (opndSize == 8)
cb_write_rm(cb, false, false, opnd0, opnd1, 0xFF, 1, opRegMem8);
else
cb_write_rm(cb, szPref, rexW, opnd0, opnd1, 0xFF, 1, opRegMemPref);
}
// R/M + Imm
else if (opnd1.type == OPND_IMM)
{
// 8-bit immediate
if (opnd1.num_bits <= 8)
{
if (opndSize == 8)
cb_write_rm(cb, false, false, NO_OPND, opnd0, opExtImm, 1, opMemImm8);
else
cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExtImm, 1, opMemImmSml);
cb_write_int(cb, opnd1.as.imm, 8);
}
// 32-bit immediate
else if (opnd1.num_bits <= 32)
{
assert (opnd1.num_bits <= opndSize && "immediate too large for dst");
cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExtImm, 1, opMemImmLrg);
cb_write_int(cb, opnd1.as.imm, (opndSize > 32)? 32:opndSize);
}
// Immediate too large
else
{
assert (false && "immediate value too large");
}
}
// Invalid operands
else
{
assert (false && "invalid operand combination");
}
}
// Encode a single-operand shift instruction
static void cb_write_shift(
codeblock_t *cb,
const char *mnem,
uint8_t opMemOnePref,
uint8_t opMemClPref,
uint8_t opMemImmPref,
uint8_t opExt,
x86opnd_t opnd0,
x86opnd_t opnd1)
{
// Write a disassembly string
//cb.writeASM(mnem, opnd0, opnd1);
// Check the size of opnd0
uint32_t opndSize;
if (opnd0.type == OPND_REG || opnd0.type == OPND_MEM)
opndSize = opnd0.num_bits;
else
rb_bug("yjit: shift: invalid first operand");
assert (opndSize == 16 || opndSize == 32 || opndSize == 64);
bool szPref = opndSize == 16;
bool rexW = opndSize == 64;
if (opnd1.type == OPND_IMM)
{
if (opnd1.as.imm == 1)
{
cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExt, 1, opMemOnePref);
}
else
{
assert (opnd1.num_bits <= 8);
cb_write_rm(cb, szPref, rexW, NO_OPND, opnd0, opExt, 1, opMemImmPref);
cb_write_byte(cb, (uint8_t)opnd1.as.imm);
}
}
/*
else if (opnd1.isReg && opnd1.reg == CL)
{
cb.writeRMInstr!('l', opExt, opMemClPref)(szPref, rexW, opnd0, X86Opnd.NONE);
}
*/
else
{
assert (false);
}
}
// Encode a relative jump to a label (direct or conditional)
// Note: this always encodes a 32-bit offset
static void cb_write_jcc(codeblock_t *cb, const char *mnem, uint8_t op0, uint8_t op1, uint32_t label_idx)
{
//cb.writeASM(mnem, label);
// Write the opcode
if (op0 != 0xFF)
cb_write_byte(cb, op0);
cb_write_byte(cb, op1);
// Add a reference to the label
cb_label_ref(cb, label_idx);
// Relative 32-bit offset to be patched
cb_write_int(cb, 0, 32);
}
// Encode a relative jump to a pointer at a 32-bit offset (direct or conditional)
static void cb_write_jcc_ptr(codeblock_t *cb, const char *mnem, uint8_t op0, uint8_t op1, uint8_t *dst_ptr)
{
//cb.writeASM(mnem, label);
// Write the opcode
if (op0 != 0xFF)
cb_write_byte(cb, op0);
cb_write_byte(cb, op1);
// Pointer to the end of this jump instruction
uint8_t *end_ptr = cb_get_ptr(cb, cb->write_pos + 4);
// Compute the jump offset
int64_t rel64 = (int64_t)(dst_ptr - end_ptr);
if (rel64 >= INT32_MIN && rel64 <= INT32_MAX) {
// Write the relative 32-bit jump offset
cb_write_int(cb, (int32_t)rel64, 32);
}
else {
// Offset doesn't fit in 4 bytes. Report error.
cb->dropped_bytes = true;
}
}
// Encode a conditional move instruction
static void cb_write_cmov(codeblock_t *cb, const char *mnem, uint8_t opcode1, x86opnd_t dst, x86opnd_t src)
{
//cb.writeASM(mnem, dst, src);
assert (dst.type == OPND_REG);
assert (src.type == OPND_REG || src.type == OPND_MEM);
assert (dst.num_bits >= 16 && "invalid dst reg size in cmov");
bool szPref = dst.num_bits == 16;
bool rexW = dst.num_bits == 64;
cb_write_rm(cb, szPref, rexW, dst, src, 0xFF, 2, 0x0F, opcode1);
}
// add - Integer addition
void add(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"add",
0x00, // opMemReg8
0x01, // opMemRegPref
0x02, // opRegMem8
0x03, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x00, // opExtImm
opnd0,
opnd1
);
}
/// and - Bitwise AND
void and(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"and",
0x20, // opMemReg8
0x21, // opMemRegPref
0x22, // opRegMem8
0x23, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x04, // opExtImm
opnd0,
opnd1
);
}
// call - Call to a pointer with a 32-bit displacement offset
static void call_rel32(codeblock_t *cb, int32_t rel32)
{
//cb.writeASM("call", rel32);
// Write the opcode
cb_write_byte(cb, 0xE8);
// Write the relative 32-bit jump offset
cb_write_int(cb, (int32_t)rel32, 32);
}
// call - Call a pointer, encode with a 32-bit offset if possible
void call_ptr(codeblock_t *cb, x86opnd_t scratch_reg, uint8_t *dst_ptr)
{
assert (scratch_reg.type == OPND_REG);
// Pointer to the end of this call instruction
uint8_t *end_ptr = cb_get_ptr(cb, cb->write_pos + 5);
// Compute the jump offset
int64_t rel64 = (int64_t)(dst_ptr - end_ptr);
// If the offset fits in 32-bit
if (rel64 >= INT32_MIN && rel64 <= INT32_MAX) {
call_rel32(cb, (int32_t)rel64);
return;
}
// Move the pointer into the scratch register and call
mov(cb, scratch_reg, const_ptr_opnd(dst_ptr));
call(cb, scratch_reg);
}
/// call - Call to label with 32-bit offset
void call_label(codeblock_t *cb, uint32_t label_idx)
{
//cb.writeASM("call", label);
// Write the opcode
cb_write_byte(cb, 0xE8);
// Add a reference to the label
cb_label_ref(cb, label_idx);
// Relative 32-bit offset to be patched
cb_write_int(cb, 0, 32);
}
/// call - Indirect call with an R/M operand
void call(codeblock_t *cb, x86opnd_t opnd)
{
//cb.writeASM("call", opnd);
cb_write_rm(cb, false, false, NO_OPND, opnd, 2, 1, 0xFF);
}
/// cmovcc - Conditional move
void cmova(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmova", 0x47, dst, src); }
void cmovae(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovae", 0x43, dst, src); }
void cmovb(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovb", 0x42, dst, src); }
void cmovbe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovbe", 0x46, dst, src); }
void cmovc(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovc", 0x42, dst, src); }
void cmove(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmove", 0x44, dst, src); }
void cmovg(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovg", 0x4F, dst, src); }
void cmovge(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovge", 0x4D, dst, src); }
void cmovl(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovl", 0x4C, dst, src); }
void cmovle(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovle", 0x4E, dst, src); }
void cmovna(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovna", 0x46, dst, src); }
void cmovnae(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnae", 0x42, dst, src); }
void cmovnb(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnb", 0x43, dst, src); }
void cmovnbe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnbe", 0x47, dst, src); }
void cmovnc(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnc", 0x43, dst, src); }
void cmovne(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovne", 0x45, dst, src); }
void cmovng(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovng", 0x4E, dst, src); }
void cmovnge(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnge", 0x4C, dst, src); }
void cmovnl(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnl" , 0x4D, dst, src); }
void cmovnle(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnle", 0x4F, dst, src); }
void cmovno(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovno", 0x41, dst, src); }
void cmovnp(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnp", 0x4B, dst, src); }
void cmovns(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovns", 0x49, dst, src); }
void cmovnz(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovnz", 0x45, dst, src); }
void cmovo(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovo", 0x40, dst, src); }
void cmovp(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovp", 0x4A, dst, src); }
void cmovpe(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovpe", 0x4A, dst, src); }
void cmovpo(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovpo", 0x4B, dst, src); }
void cmovs(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovs", 0x48, dst, src); }
void cmovz(codeblock_t *cb, x86opnd_t dst, x86opnd_t src) { cb_write_cmov(cb, "cmovz", 0x44, dst, src); }
/// cmp - Compare and set flags
void cmp(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"cmp",
0x38, // opMemReg8
0x39, // opMemRegPref
0x3A, // opRegMem8
0x3B, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x07, // opExtImm
opnd0,
opnd1
);
}
/// cdq - Convert doubleword to quadword
void cdq(codeblock_t *cb)
{
//cb.writeASM("cdq");
cb_write_byte(cb, 0x99);
}
/// cqo - Convert quadword to octaword
void cqo(codeblock_t *cb)
{
//cb.writeASM("cqo");
cb_write_bytes(cb, 2, 0x48, 0x99);
}
/// Interrupt 3 - trap to debugger
void int3(codeblock_t *cb)
{
//cb.writeASM("INT 3");
cb_write_byte(cb, 0xCC);
}
/*
// div - Unsigned integer division
alias div = writeRMUnary!(
"div",
0xF6, // opMemReg8
0xF7, // opMemRegPref
0x06 // opExt
);
*/
/*
/// divsd - Divide scalar double
alias divsd = writeXMM64!(
"divsd",
0xF2, // prefix
0x0F, // opRegMem0
0x5E // opRegMem1
);
*/
/*
// idiv - Signed integer division
alias idiv = writeRMUnary!(
"idiv",
0xF6, // opMemReg8
0xF7, // opMemRegPref
0x07 // opExt
);
*/
/*
/// imul - Signed integer multiplication with two operands
void imul(CodeBlock cb, X86Opnd opnd0, X86Opnd opnd1)
{
cb.writeASM("imul", opnd0, opnd1);
assert (opnd0.isReg, "invalid first operand");
auto opndSize = opnd0.reg.size;
// Check the size of opnd1
if (opnd1.isReg)
assert (opnd1.reg.size is opndSize, "operand size mismatch");
else if (opnd1.isMem)
assert (opnd1.mem.size is opndSize, "operand size mismatch");
assert (opndSize is 16 || opndSize is 32 || opndSize is 64);
auto szPref = opndSize is 16;
auto rexW = opndSize is 64;
cb.writeRMInstr!('r', 0xFF, 0x0F, 0xAF)(szPref, rexW, opnd0, opnd1);
}
*/
/*
/// imul - Signed integer multiplication with three operands (one immediate)
void imul(CodeBlock cb, X86Opnd opnd0, X86Opnd opnd1, X86Opnd opnd2)
{
cb.writeASM("imul", opnd0, opnd1, opnd2);
assert (opnd0.isReg, "invalid first operand");
auto opndSize = opnd0.reg.size;
// Check the size of opnd1
if (opnd1.isReg)
assert (opnd1.reg.size is opndSize, "operand size mismatch");
else if (opnd1.isMem)
assert (opnd1.mem.size is opndSize, "operand size mismatch");
assert (opndSize is 16 || opndSize is 32 || opndSize is 64);
auto szPref = opndSize is 16;
auto rexW = opndSize is 64;
assert (opnd2.isImm, "invalid third operand");
auto imm = opnd2.imm;
// 8-bit immediate
if (imm.immSize <= 8)
{
cb.writeRMInstr!('r', 0xFF, 0x6B)(szPref, rexW, opnd0, opnd1);
cb.writeInt(imm.imm, 8);
}
// 32-bit immediate
else if (imm.immSize <= 32)
{
assert (imm.immSize <= opndSize, "immediate too large for dst");
cb.writeRMInstr!('r', 0xFF, 0x69)(szPref, rexW, opnd0, opnd1);
cb.writeInt(imm.imm, min(opndSize, 32));
}
// Immediate too large
else
{
assert (false, "immediate value too large");
}
}
*/
/// jcc - relative jumps to a label
void ja_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "ja" , 0x0F, 0x87, label_idx); }
void jae_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jae" , 0x0F, 0x83, label_idx); }
void jb_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jb" , 0x0F, 0x82, label_idx); }
void jbe_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jbe" , 0x0F, 0x86, label_idx); }
void jc_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jc" , 0x0F, 0x82, label_idx); }
void je_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "je" , 0x0F, 0x84, label_idx); }
void jg_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jg" , 0x0F, 0x8F, label_idx); }
void jge_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jge" , 0x0F, 0x8D, label_idx); }
void jl_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jl" , 0x0F, 0x8C, label_idx); }
void jle_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jle" , 0x0F, 0x8E, label_idx); }
void jna_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jna" , 0x0F, 0x86, label_idx); }
void jnae_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnae", 0x0F, 0x82, label_idx); }
void jnb_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnb" , 0x0F, 0x83, label_idx); }
void jnbe_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnbe", 0x0F, 0x87, label_idx); }
void jnc_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnc" , 0x0F, 0x83, label_idx); }
void jne_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jne" , 0x0F, 0x85, label_idx); }
void jng_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jng" , 0x0F, 0x8E, label_idx); }
void jnge_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnge", 0x0F, 0x8C, label_idx); }
void jnl_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnl" , 0x0F, 0x8D, label_idx); }
void jnle_label(codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnle", 0x0F, 0x8F, label_idx); }
void jno_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jno" , 0x0F, 0x81, label_idx); }
void jnp_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnp" , 0x0F, 0x8b, label_idx); }
void jns_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jns" , 0x0F, 0x89, label_idx); }
void jnz_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jnz" , 0x0F, 0x85, label_idx); }
void jo_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jo" , 0x0F, 0x80, label_idx); }
void jp_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jp" , 0x0F, 0x8A, label_idx); }
void jpe_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jpe" , 0x0F, 0x8A, label_idx); }
void jpo_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jpo" , 0x0F, 0x8B, label_idx); }
void js_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "js" , 0x0F, 0x88, label_idx); }
void jz_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jz" , 0x0F, 0x84, label_idx); }
void jmp_label (codeblock_t *cb, uint32_t label_idx) { cb_write_jcc(cb, "jmp" , 0xFF, 0xE9, label_idx); }
/// jcc - relative jumps to a pointer (32-bit offset)
void ja_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "ja" , 0x0F, 0x87, ptr); }
void jae_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jae" , 0x0F, 0x83, ptr); }
void jb_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jb" , 0x0F, 0x82, ptr); }
void jbe_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jbe" , 0x0F, 0x86, ptr); }
void jc_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jc" , 0x0F, 0x82, ptr); }
void je_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "je" , 0x0F, 0x84, ptr); }
void jg_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jg" , 0x0F, 0x8F, ptr); }
void jge_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jge" , 0x0F, 0x8D, ptr); }
void jl_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jl" , 0x0F, 0x8C, ptr); }
void jle_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jle" , 0x0F, 0x8E, ptr); }
void jna_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jna" , 0x0F, 0x86, ptr); }
void jnae_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnae", 0x0F, 0x82, ptr); }
void jnb_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnb" , 0x0F, 0x83, ptr); }
void jnbe_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnbe", 0x0F, 0x87, ptr); }
void jnc_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnc" , 0x0F, 0x83, ptr); }
void jne_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jne" , 0x0F, 0x85, ptr); }
void jng_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jng" , 0x0F, 0x8E, ptr); }
void jnge_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnge", 0x0F, 0x8C, ptr); }
void jnl_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnl" , 0x0F, 0x8D, ptr); }
void jnle_ptr(codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnle", 0x0F, 0x8F, ptr); }
void jno_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jno" , 0x0F, 0x81, ptr); }
void jnp_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnp" , 0x0F, 0x8b, ptr); }
void jns_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jns" , 0x0F, 0x89, ptr); }
void jnz_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jnz" , 0x0F, 0x85, ptr); }
void jo_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jo" , 0x0F, 0x80, ptr); }
void jp_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jp" , 0x0F, 0x8A, ptr); }
void jpe_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jpe" , 0x0F, 0x8A, ptr); }
void jpo_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jpo" , 0x0F, 0x8B, ptr); }
void js_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "js" , 0x0F, 0x88, ptr); }
void jz_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jz" , 0x0F, 0x84, ptr); }
void jmp_ptr (codeblock_t *cb, uint8_t *ptr) { cb_write_jcc_ptr(cb, "jmp" , 0xFF, 0xE9, ptr); }
/// jmp - Indirect jump near to an R/M operand
void jmp_rm(codeblock_t *cb, x86opnd_t opnd)
{
//cb.writeASM("jmp", opnd);
cb_write_rm(cb, false, false, NO_OPND, opnd, 4, 1, 0xFF);
}
// jmp - Jump with relative 32-bit offset
void jmp32(codeblock_t *cb, int32_t offset)
{
//cb.writeASM("jmp", ((offset > 0)? "+":"-") ~ to!string(offset));
cb_write_byte(cb, 0xE9);
cb_write_int(cb, offset, 32);
}
/// lea - Load Effective Address
void lea(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
//cb.writeASM("lea", dst, src);
assert (dst.num_bits == 64);
cb_write_rm(cb, false, true, dst, src, 0xFF, 1, 0x8D);
}
// Does this number fit in 32 bits and stays the same if you zero extend it to 64 bit?
// If the sign bit is clear, sign extension and zero extension yield the same
// result.
static bool
zero_extendable_32bit(uint64_t number)
{
return number <= UINT32_MAX && (number & (1ull << 31ull)) == 0;
}
/// mov - Data move operation
void mov(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
// R/M + Imm
if (src.type == OPND_IMM)
{
//cb.writeASM("mov", dst, src);
// R + Imm
if (dst.type == OPND_REG)
{
assert (
src.num_bits <= dst.num_bits ||
unsig_imm_size(src.as.imm) <= dst.num_bits
);
// In case the source immediate could be zero extended to be 64
// bit, we can use the 32-bit operands version of the instruction.
// For example, we can turn mov(rax, 0x34) into the equivalent
// mov(eax, 0x34).
if (dst.num_bits == 64 && zero_extendable_32bit(src.as.unsig_imm)) {
if (rex_needed(dst))
cb_write_rex(cb, false, 0, 0, dst.as.reg.reg_no);
cb_write_opcode(cb, 0xB8, dst);
cb_write_int(cb, src.as.imm, 32);
}
else {
if (dst.num_bits == 16)
cb_write_byte(cb, 0x66);
if (rex_needed(dst) || dst.num_bits == 64)
cb_write_rex(cb, dst.num_bits == 64, 0, 0, dst.as.reg.reg_no);
cb_write_opcode(cb, (dst.num_bits == 8)? 0xB0:0xB8, dst);
cb_write_int(cb, src.as.imm, dst.num_bits);
}
}
// M + Imm
else if (dst.type == OPND_MEM)
{
assert (src.num_bits <= dst.num_bits);
if (dst.num_bits == 8)
cb_write_rm(cb, false, false, NO_OPND, dst, 0xFF, 1, 0xC6);
else
cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, NO_OPND, dst, 0, 1, 0xC7);
const uint32_t output_num_bits = (dst.num_bits > 32u) ? 32u : dst.num_bits;
// assert that we can write whole immediate without loss of information
assert (sig_imm_size(src.as.imm) <= output_num_bits);
cb_write_int(cb, src.as.imm, output_num_bits);
}
else
{
assert (false);
}
}
else
{
cb_write_rm_multi(
cb,
"mov",
0x88, // opMemReg8
0x89, // opMemRegPref
0x8A, // opRegMem8
0x8B, // opRegMemPref
0xC6, // opMemImm8
0xFF, // opMemImmSml (not available)
0xFF, // opMemImmLrg
0xFF, // opExtImm
dst,
src
);
}
}
/// movsx - Move with sign extension (signed integers)
void movsx(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
assert (dst.type == OPND_REG);
assert (src.type == OPND_REG || src.type == OPND_MEM);
assert (src.num_bits < dst.num_bits);
//cb.writeASM("movsx", dst, src);
if (src.num_bits == 8)
{
cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, dst, src, 0xFF, 2, 0x0F, 0xBE);
}
else if (src.num_bits == 16)
{
cb_write_rm(cb, dst.num_bits == 16, dst.num_bits == 64, dst, src, 0xFF, 2, 0x0F, 0xBF);
}
else if (src.num_bits == 32)
{
cb_write_rm(cb, false, true, dst, src, 0xFF, 1, 0x63);
}
else
{
assert (false);
}
}
/*
/// movzx - Move with zero extension (unsigned values)
void movzx(codeblock_t *cb, x86opnd_t dst, x86opnd_t src)
{
cb.writeASM("movzx", dst, src);
uint32_t dstSize;
if (dst.isReg)
dstSize = dst.reg.size;
else
assert (false, "movzx dst must be a register");
uint32_t srcSize;
if (src.isReg)
srcSize = src.reg.size;
else if (src.isMem)
srcSize = src.mem.size;
else
assert (false);
assert (
srcSize < dstSize,
"movzx: srcSize >= dstSize"
);
if (srcSize is 8)
{
cb.writeRMInstr!('r', 0xFF, 0x0F, 0xB6)(dstSize is 16, dstSize is 64, dst, src);
}
else if (srcSize is 16)
{
cb.writeRMInstr!('r', 0xFF, 0x0F, 0xB7)(dstSize is 16, dstSize is 64, dst, src);
}
else
{
assert (false, "invalid src operand size for movxz");
}
}
*/
// neg - Integer negation (multiplication by -1)
void neg(codeblock_t *cb, x86opnd_t opnd)
{
write_rm_unary(
cb,
"neg",
0xF6, // opMemReg8
0xF7, // opMemRegPref
0x03, // opExt
opnd
);
}
// nop - Noop, one or multiple bytes long
void nop(codeblock_t *cb, uint32_t length)
{
switch (length) {
case 0:
break;
case 1:
//cb.writeASM("nop1");
cb_write_byte(cb, 0x90);
break;
case 2:
//cb.writeASM("nop2");
cb_write_bytes(cb, 2, 0x66,0x90);
break;
case 3:
//cb.writeASM("nop3");
cb_write_bytes(cb, 3, 0x0F,0x1F,0x00);
break;
case 4:
//cb.writeASM("nop4");
cb_write_bytes(cb, 4, 0x0F,0x1F,0x40,0x00);
break;
case 5:
//cb.writeASM("nop5");
cb_write_bytes(cb, 5, 0x0F,0x1F,0x44,0x00,0x00);
break;
case 6:
//cb.writeASM("nop6");
cb_write_bytes(cb, 6, 0x66,0x0F,0x1F,0x44,0x00,0x00);
break;
case 7:
//cb.writeASM("nop7");
cb_write_bytes(cb, 7, 0x0F,0x1F,0x80,0x00,0x00,0x00,0x00);
break;
case 8:
//cb.writeASM("nop8");
cb_write_bytes(cb, 8, 0x0F,0x1F,0x84,0x00,0x00,0x00,0x00,0x00);
break;
case 9:
//cb.writeASM("nop9");
cb_write_bytes(cb, 9, 0x66,0x0F,0x1F,0x84,0x00,0x00,0x00,0x00,0x00);
break;
default:
{
uint32_t written = 0;
while (written + 9 <= length)
{
nop(cb, 9);
written += 9;
}
nop(cb, length - written);
}
break;
}
}
// not - Bitwise NOT
void not(codeblock_t *cb, x86opnd_t opnd)
{
write_rm_unary(
cb,
"not",
0xF6, // opMemReg8
0xF7, // opMemRegPref
0x02, // opExt
opnd
);
}
/// or - Bitwise OR
void or(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"or",
0x08, // opMemReg8
0x09, // opMemRegPref
0x0A, // opRegMem8
0x0B, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x01, // opExtImm
opnd0,
opnd1
);
}
/// pop - Pop a register off the stack
void pop(codeblock_t *cb, x86opnd_t opnd)
{
assert (opnd.num_bits == 64);
//cb.writeASM("pop", opnd);
if (opnd.type == OPND_REG) {
if (rex_needed(opnd))
cb_write_rex(cb, false, 0, 0, opnd.as.reg.reg_no);
cb_write_opcode(cb, 0x58, opnd);
}
else if (opnd.type == OPND_MEM) {
cb_write_rm(cb, false, false, NO_OPND, opnd, 0, 1, 0x8F);
}
else {
assert(false && "unexpected operand type");
}
}
/// popfq - Pop the flags register (64-bit)
void popfq(codeblock_t *cb)
{
//cb.writeASM("popfq");
// REX.W + 0x9D
cb_write_bytes(cb, 2, 0x48, 0x9D);
}
/// push - Push an operand on the stack
void push(codeblock_t *cb, x86opnd_t opnd)
{
assert (opnd.num_bits == 64);
//cb.writeASM("push", opnd);
if (opnd.type == OPND_REG) {
if (rex_needed(opnd))
cb_write_rex(cb, false, 0, 0, opnd.as.reg.reg_no);
cb_write_opcode(cb, 0x50, opnd);
}
else if (opnd.type == OPND_MEM) {
cb_write_rm(cb, false, false, NO_OPND, opnd, 6, 1, 0xFF);
}
else {
assert(false && "unexpected operand type");
}
}
/// pushfq - Push the flags register (64-bit)
void pushfq(codeblock_t *cb)
{
//cb.writeASM("pushfq");
cb_write_byte(cb, 0x9C);
}
/// ret - Return from call, popping only the return address
void ret(codeblock_t *cb)
{
//cb.writeASM("ret");
cb_write_byte(cb, 0xC3);
}
// sal - Shift arithmetic left
void sal(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_shift(
cb,
"sal",
0xD1, // opMemOnePref,
0xD3, // opMemClPref,
0xC1, // opMemImmPref,
0x04,
opnd0,
opnd1
);
}
/// sar - Shift arithmetic right (signed)
void sar(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_shift(
cb,
"sar",
0xD1, // opMemOnePref,
0xD3, // opMemClPref,
0xC1, // opMemImmPref,
0x07,
opnd0,
opnd1
);
}
// shl - Shift logical left
void shl(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_shift(
cb,
"shl",
0xD1, // opMemOnePref,
0xD3, // opMemClPref,
0xC1, // opMemImmPref,
0x04,
opnd0,
opnd1
);
}
/// shr - Shift logical right (unsigned)
void shr(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_shift(
cb,
"shr",
0xD1, // opMemOnePref,
0xD3, // opMemClPref,
0xC1, // opMemImmPref,
0x05,
opnd0,
opnd1
);
}
/// sub - Integer subtraction
void sub(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"sub",
0x28, // opMemReg8
0x29, // opMemRegPref
0x2A, // opRegMem8
0x2B, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x05, // opExtImm
opnd0,
opnd1
);
}
/// test - Logical Compare
void test(codeblock_t *cb, x86opnd_t rm_opnd, x86opnd_t test_opnd)
{
assert (rm_opnd.type == OPND_REG || rm_opnd.type == OPND_MEM);
assert (test_opnd.type == OPND_REG || test_opnd.type == OPND_IMM);
// If the second operand is an immediate
if (test_opnd.type == OPND_IMM)
{
x86opnd_t imm_opnd = test_opnd;
if (imm_opnd.as.imm >= 0)
{
assert (unsig_imm_size(imm_opnd.as.unsig_imm) <= 32);
assert (unsig_imm_size(imm_opnd.as.unsig_imm) <= rm_opnd.num_bits);
// Use the smallest operand size possible
rm_opnd = resize_opnd(rm_opnd, unsig_imm_size(imm_opnd.as.unsig_imm));
if (rm_opnd.num_bits == 8)
{
cb_write_rm(cb, false, false, NO_OPND, rm_opnd, 0x00, 1, 0xF6);
cb_write_int(cb, imm_opnd.as.imm, rm_opnd.num_bits);
}
else
{
cb_write_rm(cb, rm_opnd.num_bits == 16, false, NO_OPND, rm_opnd, 0x00, 1, 0xF7);
cb_write_int(cb, imm_opnd.as.imm, rm_opnd.num_bits);
}
}
else
{
// This mode only applies to 64-bit R/M operands with 32-bit signed immediates
assert (imm_opnd.as.imm < 0);
assert (sig_imm_size(imm_opnd.as.imm) <= 32);
assert (rm_opnd.num_bits == 64);
cb_write_rm(cb, false, true, NO_OPND, rm_opnd, 0x00, 1, 0xF7);
cb_write_int(cb, imm_opnd.as.imm, 32);
}
}
else
{
assert (test_opnd.num_bits == rm_opnd.num_bits);
if (rm_opnd.num_bits == 8)
{
cb_write_rm(cb, false, false, test_opnd, rm_opnd, 0xFF, 1, 0x84);
}
else
{
cb_write_rm(cb, rm_opnd.num_bits == 16, rm_opnd.num_bits == 64, test_opnd, rm_opnd, 0xFF, 1, 0x85);
}
}
}
/// Undefined opcode
void ud2(codeblock_t *cb)
{
cb_write_bytes(cb, 2, 0x0F, 0x0B);
}
/// xchg - Exchange Register/Memory with Register
void xchg(codeblock_t *cb, x86opnd_t rm_opnd, x86opnd_t r_opnd)
{
assert (rm_opnd.num_bits == 64);
assert (r_opnd.num_bits == 64);
assert (rm_opnd.type == OPND_REG);
assert (r_opnd.type == OPND_REG);
// If we're exchanging with RAX
if (rm_opnd.type == OPND_REG && rm_opnd.as.reg.reg_no == RAX.as.reg.reg_no)
{
// Write the REX byte
cb_write_rex(cb, rm_opnd.num_bits == 64, 0, 0, r_opnd.as.reg.reg_no);
// Write the opcode and register number
cb_write_byte(cb, 0x90 + (r_opnd.as.reg.reg_no & 7));
}
else
{
cb_write_rm(cb, rm_opnd.num_bits == 16, rm_opnd.num_bits == 64, r_opnd, rm_opnd, 0xFF, 1, 0x87);
}
}
/// xor - Exclusive bitwise OR
void xor(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1)
{
cb_write_rm_multi(
cb,
"xor",
0x30, // opMemReg8
0x31, // opMemRegPref
0x32, // opRegMem8
0x33, // opRegMemPref
0x80, // opMemImm8
0x83, // opMemImmSml
0x81, // opMemImmLrg
0x06, // opExtImm
opnd0,
opnd1
);
}
// LOCK - lock prefix for atomic shared memory operations
void cb_write_lock_prefix(codeblock_t *cb)
{
cb_write_byte(cb, 0xF0);
}
void cb_mark_all_writeable(codeblock_t * cb)
{
if (mprotect(cb->mem_block_, cb->mem_size, PROT_READ | PROT_WRITE)) {
fprintf(stderr, "Couldn't make JIT page (%p) writeable, errno: %s", (void *)cb->mem_block_, strerror(errno));
abort();
}
}
void cb_mark_position_writeable(codeblock_t * cb, uint32_t write_pos)
{
uint32_t pagesize = (uint32_t)sysconf(_SC_PAGESIZE);
uint32_t aligned_position = (write_pos / pagesize) * pagesize;
if (cb->current_aligned_write_pos != aligned_position) {
cb->current_aligned_write_pos = aligned_position;
void *const page_addr = cb_get_ptr(cb, aligned_position);
if (mprotect(page_addr, pagesize, PROT_READ | PROT_WRITE)) {
fprintf(stderr, "Couldn't make JIT page (%p) writeable, errno: %s", page_addr, strerror(errno));
abort();
}
}
}
void cb_mark_all_executable(codeblock_t * cb)
{
cb->current_aligned_write_pos = ALIGNED_WRITE_POSITION_NONE;
if (mprotect(cb->mem_block_, cb->mem_size, PROT_READ | PROT_EXEC)) {
fprintf(stderr, "Couldn't make JIT page (%p) executable, errno: %s", (void *)cb->mem_block_, strerror(errno));
abort();
}
}
|