File: tut_classes.html

package info (click to toggle)
rubybook 0.2.1-1
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k, lenny, squeeze, wheezy
  • size: 4,248 kB
  • ctags: 1,042
  • sloc: xml: 60,486; makefile: 25
file content (1260 lines) | stat: -rw-r--r-- 51,844 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
<html><title>Programming Ruby: The Pragmatic Programmer's Guide</title><head><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"><STYLE TYPE="text/css"><!--
       BODY    { margin-left: 1in;
                 width: 6in;
                 font-family: helvetica, arial, sans-serif;
               }
       H1      { color: #000080;
                 font-family: helvetica, arial, sans-serif;
                 font-size: 22pt;
                 margin-left: 0in
               }
       H2      { color: #000080;  font: bold x-large helvetica, sans-serif;
                 margin-left: 0in }
       H3      { color: #000080;  font: bold   large helvetica, sans-serif; }
       H4      { color: #000080;  font: italic large helvetica, sans-serif; }
       .ruby   { background: #fff0f0 }
       .header { color: white }
       .subheader { color: #ffdddd }
       .sidebar   { width: 6in }
       span.sans { font-family: helvetica, arial, sans-serif }
       -->
   </STYLE><table bgcolor="#a03030" cellpadding="3" border="0" cellspacing="0"><tr><td colspan="3"><table bgcolor="#902020" cellpadding="20"><tr><td><h1 class="header">Programming Ruby</h1><h3 class="subheader">The Pragmatic Programmer's Guide</h3></td></tr></table></td></tr><tr><td width="33%" align="left"><a class="subheader" href="intro.html">Previous &lt;</a></td><td width="33%" align="center" valign="middle"><a class="subheader" href="index.html">Contents ^</a><br></td><td width="33%" align="right"><a class="subheader" href="tut_containers.html">Next ></a><br></td></tr></table></head><body bgcolor="white">
<!--
    Copyright (c) 2001 by Addison Wesley Longman.  This
    material may be distributed only subject to the terms and
    conditions set forth in the Open Publication License, v1.0 or
    later (the latest version is presently available at
    http://www.opencontent.org/openpub/).
-->
<h1>Classes, Objects, and Variables</h1><hr><br>
<P></P>
From the examples we've shown so far, you might be wondering about our
earlier assertion that Ruby is an object-oriented language.  Well,
this chapter is where we justify that claim. We're going to be looking
at how you create classes and objects in Ruby, and at some of the ways
in which Ruby is more powerful than most object-oriented languages.
Along the way, we'll be implementing part of our next billion-dollar
product, the Internet Enabled Jazz and Blue Grass jukebox.
<P></P>
After months of work, our highly paid Research and Development folks
have determined that our jukebox needs <em>songs</em>. So it seems like
a good idea to start off by setting up a Ruby class that represents
things that are songs.  We know that a real song has a name, an artist, and
a duration, so we'll want to make sure that the song objects in our
program do, too.
<P></P>
We'll start off by creating a basic class <code>Song</code>,<em>[As we
  mentioned on page 9, class names start with an
  uppercase letter, while method names start with a lowercase letter.]</em>
which contains just a single method, <code>initialize</code>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Song
&nbsp;&nbsp;def&nbsp;initialize(name,&nbsp;artist,&nbsp;duration)
&nbsp;&nbsp;&nbsp;&nbsp;@name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;name
&nbsp;&nbsp;&nbsp;&nbsp;@artist&nbsp;&nbsp;&nbsp;=&nbsp;artist
&nbsp;&nbsp;&nbsp;&nbsp;@duration&nbsp;=&nbsp;duration
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
<code>initialize</code> is a special method in Ruby programs. When you
call <code>Song#new</code> to create a new <code>Song</code> object, Ruby creates an
uninitialized object and then calls that object's <code>initialize</code>
method, passing in any parameters that were passed to
<code>new</code>. This gives you a chance to write code that sets up your
object's state.
<P></P>
For class <code>Song</code>, the <code>initialize</code> method takes three
parameters. These parameters act just like local variables within the
method, so they follow the local variable naming convention of
starting with a lowercase letter. 
<P></P>
Each object represents its own song, so we need each of our <code>Song</code>
objects to carry around its own song name, artist, and duration.  This
means we need to store these values as <em>instance variables</em>
within the object.
In Ruby, an instance variable is simply a name
preceded by an ``at'' sign (``@''). In our example, the parameter
<code>name</code> is assigned to the instance variable <code>@name</code>,
<code>artist</code> is assigned to <code>@artist</code>, and <code>duration</code> (the
length of the song in seconds) is assigned to <code>@duration</code>.
<P></P>
Let's test our spiffy new class.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.inspect</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"#&lt;Song:0x4018bfc4&nbsp;&nbsp;@duration=260,&nbsp;@artist=\"Fleck\",&nbsp;@name=\"Bicylops\">"</code></td>
</tr>
</table>
<P></P>

<P></P>
Well, it seems to work. By default, the <code>inspect</code> message,
which can be sent to any object, dumps out the object's id and instance
variables. It looks as though we have them set up correctly.
<P></P>
Our experience tells us that during development we'll be printing out
the contents of a <code>Song</code> object many times, and <code>inspect</code>'s
default formatting leaves something to be desired. Fortunately, Ruby
has a standard message, <code>to_s</code>,
which it
sends to any object it wants to render as a string. Let's try it on
our song.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.to_s</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"#&lt;Song:0x4018c1b8>"</code></td>
</tr>
</table>
<P></P>

<P></P>
That wasn't too useful---it just reported the object id. So, let's
override <code>to_s</code> in our class.
As we do this, we should also take a moment to talk about how we're
showing the class definitions in this book.
<P></P>
In Ruby, classes are never closed: you can always add methods to an
existing class.
This applies to the classes you write as well as the
standard, built-in classes. All you have to do is open up a class
definition for an existing class, and the new contents you specify
will be added to whatever's there.
<P></P>
This is great for our purposes. As we go through this chapter, adding
features to our classes, we'll show just the class definitions for the 
new methods; the old ones will still be there. It saves us having to
repeat redundant stuff in each example. Obviously, though, if you were 
creating this code from scratch, you'd probably just throw all the
methods into a single class definition.
<P></P>
Enough detail! Let's get back to adding a <code>to_s</code> method to our 
<code>Song</code> class.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;to_s</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;"Song:&nbsp;#{@name}--#{@artist}&nbsp;(#{@duration})"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.to_s</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Song:&nbsp;Bicylops--Fleck&nbsp;(260)"</code></td>
</tr>
</table>
<P></P>

<P></P>
Excellent, we're making progress.  However, we've slipped in something
subtle. We said that Ruby supports <code>to_s</code> for all objects, but
we didn't say how. The answer has to do with inheritance, subclassing,
and how Ruby determines what method to run when you send a message to
an object. This is a subject for a new section, so....
<h2>Inheritance and Messages</h2>
<P></P>
Inheritance allows you to create a class that is a refinement or
specialization of another class.
For example, our jukebox has the
concept of songs, which we encapsulate in class <code>Song</code>. Then
marketing comes along and tells us that we need to provide karaoke
support. A karaoke song is just like any other (there's no vocal on
it, but that doesn't concern us). However, it also has an associated
set of lyrics, along with timing information. When our jukebox plays a 
karaoke song, the lyrics should flow across the screen on the front of 
the jukebox in time with the music.
<P></P>
An approach to this problem is to define a new class, <code>KaraokeSong</code>,
which is just like <code>Song</code>, but with a lyric track.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;KaraokeSong&nbsp;&lt;&nbsp;Song
&nbsp;&nbsp;def&nbsp;initialize(name,&nbsp;artist,&nbsp;duration,&nbsp;lyrics)
&nbsp;&nbsp;&nbsp;&nbsp;super(name,&nbsp;artist,&nbsp;duration)
&nbsp;&nbsp;&nbsp;&nbsp;@lyrics&nbsp;=&nbsp;lyrics
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
The ``<code>&lt;&nbsp;Song</code>'' on the class definition line tells Ruby that a
<code>KaraokeSong</code> is a <em>subclass</em> of <code>Song</code>.
(Not surprisingly,
this means that <code>Song</code> is a <em>superclass</em> of <code>KaraokeSong</code>. People
also talk about parent-child relationships, so <code>KaraokeSong</code>'s
parent would be <code>Song</code>.) For now, don't worry too much about the
<code>initialize</code> method; we'll talk about that <code>super</code> call later.
<P></P>
Let's create a <code>KaraokeSong</code> and check that our code worked. (In the
final system, the lyrics will be held in an object that includes the
text and timing information. To test out our class, though, we'll just 
use a string. This is another benefit of untyped languages---we don't
have to define everything before we start running code.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;KaraokeSong.new("My&nbsp;Way",&nbsp;"Sinatra",&nbsp;225,&nbsp;"And&nbsp;now,&nbsp;the...")</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.to_s</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Song:&nbsp;My&nbsp;Way--Sinatra&nbsp;(225)"</code></td>
</tr>
</table>
<P></P>

<P></P>
Well, it ran, but why doesn't the <code>to_s</code> method show the
lyric?
<P></P>
The answer has to do with the way Ruby determines which method should
be called when you send a message to an object. When Ruby compiles the
method invocation <code>aSong.to_s</code>, it doesn't actually know where to
find the method <code>to_s</code>. Instead, it defers the decision until
the program is run. At that time, it looks at the class of <code>aSong</code>.
If that class implements a method with the same name as the message,
that method is run. Otherwise, Ruby looks for a method in the parent
class, and then in the grandparent, and so on up the ancestor chain.
If it runs out of ancestors without finding the appropriate method, it
takes a special action that normally results in an error being
raised.<em>[In fact, you can intercept this error, which allows
  you to fake out methods at runtime. This is described under
  <a href="ref_c_object.html#method_missing"><code>Object#method_missing</code></a> on page 360.]</em>
<P></P>
So, back to our example. We sent the message <code>to_s</code> to
<code>aSong</code>, an object of class <code>KaraokeSong</code>.
Ruby looks in
<code>KaraokeSong</code> for a method called <code>to_s</code>, but doesn't find
it. The interpreter then looks in <code>KaraokeSong</code>'s parent, class
<code>Song</code>, and there it finds the <code>to_s</code> method that we defined
on page 20. That's why it prints out the song details but
not the lyrics---class <code>Song</code> doesn't know anything about lyrics.
<P></P>
Let's fix this by implementing <code>KaraokeSong#to_s</code>. There are a
number of ways to do this. Let's start with a bad way. We'll copy
the <code>to_s</code> method from <code>Song</code> and add on the lyric.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;KaraokeSong</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;#&nbsp;...</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;to_s</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;"KS:&nbsp;#{@name}--#{@artist}&nbsp;(#{@duration})&nbsp;[#{@lyrics}]"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;KaraokeSong.new("My&nbsp;Way",&nbsp;"Sinatra",&nbsp;225,&nbsp;"And&nbsp;now,&nbsp;the...")</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.to_s</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"KS:&nbsp;My&nbsp;Way--Sinatra&nbsp;(225)&nbsp;[And&nbsp;now,&nbsp;the...]"</code></td>
</tr>
</table>
<P></P>

<P></P>
We're correctly displaying the value of the <code>@lyrics</code> instance
variable. To do this, the subclass directly accesses the instance
variables of its ancestors. So why is this a bad way to implement
<code>to_s</code>?
<P></P>
The answer has to do with good programming style (and something called
<em>decoupling</em>). By poking around in our parent's internal state,
we're tying ourselves tightly to its implementation. Say we decided to
change <code>Song</code> to store the duration in milliseconds. Suddenly,
<code>KaraokeSong</code> would start reporting ridiculous values. The idea of a
karaoke version of ``My Way'' that lasts for 3750 minutes is just too
frightening to consider.
<P></P>
We get around this problem by having each class handle its own
internal state. When <code>KaraokeSong#to_s</code> is called, we'll have it call
its parent's <code>to_s</code> method to get the song details. It will
then append to this the lyric information and return the result. The
trick here is the Ruby keyword ``<code>super</code>''. When you invoke
<code>super</code> with no arguments, Ruby sends a message to the current
object's parent, asking it to invoke a method of the same name as the
current method, and passing it the parameters that were passed to the
current method. Now we can implement our new and improved
<code>to_s</code>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;KaraokeSong&nbsp;&lt;&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;#&nbsp;Format&nbsp;ourselves&nbsp;as&nbsp;a&nbsp;string&nbsp;by&nbsp;appending</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;#&nbsp;our&nbsp;lyrics&nbsp;to&nbsp;our&nbsp;parent's&nbsp;#to_s&nbsp;value.</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;to_s</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;super&nbsp;+&nbsp;"&nbsp;[#{@lyrics}]"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;KaraokeSong.new("My&nbsp;Way",&nbsp;"Sinatra",&nbsp;225,&nbsp;"And&nbsp;now,&nbsp;the...")</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.to_s</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Song:&nbsp;My&nbsp;Way--Sinatra&nbsp;(225)&nbsp;[And&nbsp;now,&nbsp;the...]"</code></td>
</tr>
</table>
<P></P>

<P></P>
We explicitly told Ruby that <code>KaraokeSong</code> was a subclass of
<code>Song</code>, but we didn't specify a parent class for <code>Song</code> itself. If
you don't specify a parent when defining a class, Ruby supplies
class <code>Object</code> as a default. This means that all objects have
<code>Object</code> as an ancestor, and that <code>Object</code>'s instance methods are
available to every object in Ruby. Back on page 20 we said
that <code>to_s</code> is available to all objects. Now we know why;
<code>to_s</code> is one of more than 35 instance methods in
class <code>Object</code>. The complete list begins on page 356.
<h3>Inheritance and Mixins</h3>
<P></P>
Some object-oriented languages (notably C++) support
multiple inheritance, where a class can have more than one immediate
parent, inheriting functionality from each. Although powerful, this
technique can be dangerous, as the inheritance hierarchy can
become ambiguous.
<P></P>
Other languages, such as Java, support single inheritance. Here, a
class can have only one immediate parent. Although cleaner (and easier
to implement), single inheritance also has drawbacks---in the real
world things often inherit attributes from multiple sources (a ball is
both a <em>bouncing thing</em> and a <em>spherical thing</em>, for
example).
<P></P>
Ruby offers an interesting and powerful compromise, giving you the
simplicity of single inheritance and the power of multiple
inheritance. A Ruby class can
have only one direct parent, and so Ruby is a single-inheritance
language. However, Ruby classes can include the functionality of any
number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with none
of the drawbacks. We'll explore mixins more beginning
on page 100.
<P></P>
So far in this chapter we've been looking at classes and their
methods. Now it's time to move on to the objects, such as the
instances of class <code>Song</code>.
<h2>Objects and Attributes</h2>
<P></P>
The <code>Song</code> objects we've created so far have an internal state (such as
the song title and artist). That state is private to those
objects---no other object can access an object's instance variables.
In general, this is a Good Thing. It means that the object is solely
responsible for maintaining its own consistency.
<P></P>
However, an object that is totally secretive is pretty useless---you
can create it, but then you can't do anything with it. You'll normally
define methods that let you access and manipulate the state of an
object, allowing the outside world to interact with the object. These
externally visible facets of an object are called its
<em>attributes</em>.
<P></P>
For our <code>Song</code> objects, the first thing we may need is the ability
to find out the title and artist (so we can display them while the
song is playing) and the duration (so we can display some kind of
progress bar).
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;name</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@name</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;artist</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@artist</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;duration</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@duration</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.artist</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Fleck"</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.name</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Bicylops"</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.duration</code></td>
  <td valign="top"></td>
  <td valign="top"><code>260</code></td>
</tr>
</table>
<P></P>

<P></P>
Here we've defined three accessor methods to return the values of the
three instance attributes. Because this is such a common idiom, Ruby
provides a convenient shortcut: <code>attr_reader</code> creates these
accessor methods for you.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;attr_reader&nbsp;:name,&nbsp;:artist,&nbsp;:duration</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.artist</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Fleck"</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.name</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Bicylops"</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.duration</code></td>
  <td valign="top"></td>
  <td valign="top"><code>260</code></td>
</tr>
</table>
<P></P>

<P></P>
This example has introduced something new. The construct <code>:artist</code>
is an expression that returns a <code>Symbol</code> object corresponding to
<code>artist</code>. You can think of <code>:artist</code> as meaning the <em>name</em>
of the variable <code>artist</code>, while plain <code>artist</code> is the
<em>value</em> of the variable. In this example, we named the accessor
methods <code>name</code>, <code>artist</code>, and <code>duration</code>.  The
corresponding instance variables, <code>@name</code>, <code>@artist</code>, and
<code>@duration</code>, will be created automatically.  These accessor methods
are identical to the ones we wrote by hand earlier.
<h3>Writable Attributes</h3>
<P></P>
Sometimes you need to be able to set an attribute from outside the
object. For example, let's assume that the duration that is initially
associated with a song is an estimate (perhaps gathered from
information on a CD or in the MP3 data). The first time we play the
song, we get to find out how long it actually is, and we store this
new value back in the <code>Song</code> object.
<P></P>
In languages such as C++ and Java, you'd do this with <em>setter
  functions</em>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;JavaSong&nbsp;{&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;//&nbsp;Java&nbsp;code
&nbsp;&nbsp;private&nbsp;Duration&nbsp;myDuration;
&nbsp;&nbsp;public&nbsp;void&nbsp;setDuration(Duration&nbsp;newDuration)&nbsp;{
&nbsp;&nbsp;&nbsp;&nbsp;myDuration&nbsp;=&nbsp;newDuration;
&nbsp;&nbsp;}
}
s&nbsp;=&nbsp;new&nbsp;Song(....)
s.setDuration(length)
</pre></td></tr></table>

<P></P>
In Ruby, the attributes of an object can be accessed as if they were
any other variable. We've seen this above with phrases such as
<code>aSong.name</code>. So, it seems natural to be able to assign to these
variables when you want to set the value of an attribute. In keeping
with the Principle of Least Surprise, that's just what you do in Ruby.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;duration=(newDuration)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@duration&nbsp;=&nbsp;newDuration</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.duration</code></td>
  <td valign="top"></td>
  <td valign="top"><code>260</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong.duration&nbsp;=&nbsp;257&nbsp;&nbsp;&nbsp;#&nbsp;set&nbsp;attribute&nbsp;with&nbsp;updated&nbsp;value</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.duration</code></td>
  <td valign="top"></td>
  <td valign="top"><code>257</code></td>
</tr>
</table>
<P></P>

<P></P>
The assignment ``<code>aSong.duration&nbsp;=&nbsp;257</code>'' invokes the method
<code>duration=</code> in the <code>aSong</code> object, passing it <code>257</code> as
an argument. In fact, defining a method name ending in an equals sign
makes that name eligible to appear on the left-hand side of an
assignment.
<P></P>
Again, Ruby provides a shortcut for creating these simple attribute
setting methods.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Song
&nbsp;&nbsp;attr_writer&nbsp;:duration
end
aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)
aSong.duration&nbsp;=&nbsp;257
</pre></td></tr></table>

<h3>Virtual Attributes</h3>
<P></P>
These attribute accessing methods do not have to be just simple
wrappers around an object's instance variables. For example, you might 
want to access the duration in minutes and fractions of a minute,
rather than in seconds as we've been doing.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Song</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;durationInMinutes</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@duration/60.0&nbsp;&nbsp;&nbsp;#&nbsp;force&nbsp;floating&nbsp;point</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;durationInMinutes=(value)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;@duration&nbsp;=&nbsp;(value*60).to_i</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.durationInMinutes</code></td>
  <td valign="top"></td>
  <td valign="top"><code>4.333333333</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>aSong.durationInMinutes&nbsp;=&nbsp;4.2</code></td>
</tr>
<tr>
  <td valign="top"><code>aSong.duration</code></td>
  <td valign="top"></td>
  <td valign="top"><code>252</code></td>
</tr>
</table>
<P></P>

<P></P>
Here we've used attribute methods to create a virtual instance
variable. To the outside world, <code>durationInMinutes</code> seems to be an
attribute like any other. Internally, though, there is no
corresponding instance variable.
<P></P>
This is more than a curiosity. In his landmark book
<em>Object-Oriented Software Construction</em>&nbsp;,
Bertrand Meyer
calls this the <em>Uniform Access Principle</em>.
By hiding the
difference between instance variables and calculated values, you are
shielding the rest of the world from the implementation of your class.
You're free to change how things work in the future without impacting
the millions of lines of code that use your class. This is a big win.
<h2>Class Variables and Class Methods</h2>
<P></P>
So far, all the classes we've created have contained instance
variables and instance methods: variables that are associated with a
particular instance of the class, and methods that work on those
variables.  Sometimes classes themselves need to have their own states.
This is where class variables come in.
<h3>Class Variables</h3>
<P></P>
A class variable is shared among all objects of a class, and it is also
accessible to the class methods that we'll describe later.
There is
only one copy of a particular class variable for a given class. Class
variable names start with two ``at'' signs, such as ``<code>@@count</code>''.
Unlike global and instance variables, class variables must be
initialized before they are used.  Often this initialization is just a
simple assignment in the body of the class definition.
<P></P>
For example, our jukebox may want to record how many times each
particular song has been played. This count would probably be an
instance variable of the <code>Song</code> object. When a song is played, the
value in the instance is incremented. But say we also want to know
how many songs have been played in total. We could do this by
searching for all the <code>Song</code> objects and adding up their counts, or
we could risk excommunication from the Church of Good Design and use a
global variable. Instead, we'll use a class variable.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Song
&nbsp;&nbsp;@@plays&nbsp;=&nbsp;0
&nbsp;&nbsp;def&nbsp;initialize(name,&nbsp;artist,&nbsp;duration)
&nbsp;&nbsp;&nbsp;&nbsp;@name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;name
&nbsp;&nbsp;&nbsp;&nbsp;@artist&nbsp;&nbsp;&nbsp;=&nbsp;artist
&nbsp;&nbsp;&nbsp;&nbsp;@duration&nbsp;=&nbsp;duration
&nbsp;&nbsp;&nbsp;&nbsp;@plays&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;0
&nbsp;&nbsp;end
&nbsp;&nbsp;def&nbsp;play
&nbsp;&nbsp;&nbsp;&nbsp;@plays&nbsp;+=&nbsp;1
&nbsp;&nbsp;&nbsp;&nbsp;@@plays&nbsp;+=&nbsp;1
&nbsp;&nbsp;&nbsp;&nbsp;"This&nbsp;&nbsp;song:&nbsp;#@plays&nbsp;plays.&nbsp;Total&nbsp;#@@plays&nbsp;plays."
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
For debugging purposes, we've arranged for <code>Song#play</code> to return a 
string containing the number of times this song has been played, along 
with the total number of plays for all songs. We can test this easily.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>s1&nbsp;=&nbsp;Song.new("Song1",&nbsp;"Artist1",&nbsp;234)&nbsp;&nbsp;#&nbsp;test&nbsp;songs..</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>s2&nbsp;=&nbsp;Song.new("Song2",&nbsp;"Artist2",&nbsp;345)</code></td>
</tr>
<tr>
  <td valign="top"><code>s1.play</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"This&nbsp;&nbsp;song:&nbsp;1&nbsp;plays.&nbsp;Total&nbsp;1&nbsp;plays."</code></td>
</tr>
<tr>
  <td valign="top"><code>s2.play</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"This&nbsp;&nbsp;song:&nbsp;1&nbsp;plays.&nbsp;Total&nbsp;2&nbsp;plays."</code></td>
</tr>
<tr>
  <td valign="top"><code>s1.play</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"This&nbsp;&nbsp;song:&nbsp;2&nbsp;plays.&nbsp;Total&nbsp;3&nbsp;plays."</code></td>
</tr>
<tr>
  <td valign="top"><code>s1.play</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"This&nbsp;&nbsp;song:&nbsp;3&nbsp;plays.&nbsp;Total&nbsp;4&nbsp;plays."</code></td>
</tr>
</table>
<P></P>

<P></P>
Class variables are private to a class and its instances. If you want
to make them accessible to the outside world, you'll need to write an
accessor method. This method could be either an instance method or,
leading us neatly to the next section, a class method.
<h3>Class Methods</h3>
<P></P>
Sometimes a class needs to provide methods that work without being tied 
to any particular object.
<P></P>
We've already come across one such method.
The <code>new</code> method creates a new <code>Song</code> object but is not
itself associated with a particular song. 
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
aSong&nbsp;=&nbsp;Song.new(....)
</pre></td></tr></table>

<P></P>
You'll find class methods sprinkled throughout the Ruby libraries. For
example, objects of class <code>File</code> represent open files
in the underlying file system. However, class <code>File</code> also provides
several class methods for manipulating files that aren't open and
therefore don't have a <code>File</code> object. If you want to delete a file,
you call the class method <a href="ref_c_file.html#delete"><code>File::delete</code></a>, passing in the name.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
File.delete("doomedFile")
</pre></td></tr></table>

<P></P>
Class methods are distinguished from instance methods by their
definition.
Class methods are defined by placing the class name and a period in
front of the method name.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Example
<P></P>
&nbsp;&nbsp;def&nbsp;instMeth&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;instance&nbsp;method
&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;def&nbsp;Example.classMeth&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;class&nbsp;method
&nbsp;&nbsp;end
<P></P>
end
</pre></td></tr></table>

<P></P>
Jukeboxes charge money
for each song played, not by the minute. That makes short songs more
profitable than long ones. We may want to prevent songs that take too
long from being available on the SongList. We could define a class
method in <code>SongList</code> that checked to see if a particular song
exceeded the limit. We'll set this limit using a class constant, which 
is simply a constant (remember constants? they start with an uppercase 
letter) that is initialized in the class body.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;SongList</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;MaxTime&nbsp;=&nbsp;5*60&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;&nbsp;5&nbsp;minutes</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;SongList.isTooLong(aSong)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;aSong.duration&nbsp;>&nbsp;MaxTime</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>song1&nbsp;=&nbsp;Song.new("Bicylops",&nbsp;"Fleck",&nbsp;260)</code></td>
</tr>
<tr>
  <td valign="top"><code>SongList.isTooLong(song1)</code></td>
  <td valign="top"></td>
  <td valign="top"><code>false</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>song2&nbsp;=&nbsp;Song.new("The&nbsp;Calling",&nbsp;"Santana",&nbsp;468)</code></td>
</tr>
<tr>
  <td valign="top"><code>SongList.isTooLong(song2)</code></td>
  <td valign="top"></td>
  <td valign="top"><code>true</code></td>
</tr>
</table>
<P></P>

<h3>Singletons and Other Constructors</h3>
<P></P>
Sometimes you want to override the default way in which Ruby creates
objects.  As an example, let's look at our jukebox. Because we'll have
many jukeboxes, spread all over the country, we want to make
maintenance as easy as possible. Part of the requirement is to log
everything that happens to a jukebox: the songs that are played, the
money received, the strange fluids poured into it, and so on. Because
we want to reserve the network bandwidth for music, we'll store these
logfiles locally.  This means we'll need a class that handles logging.
However, we want only one logging object per jukebox, and we want
that object to be shared among all the other objects that use it.
<P></P>
Enter the Singleton pattern, documented in <em>Design
  Patterns</em>&nbsp;.
We'll arrange things so that the
only way to create a logging object is to call <code>Logger#create</code>,
and we'll ensure that only one logging object is ever created.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Logger
&nbsp;&nbsp;private_class_method&nbsp;:new
&nbsp;&nbsp;@@logger&nbsp;=&nbsp;nil
&nbsp;&nbsp;def&nbsp;Logger.create
&nbsp;&nbsp;&nbsp;&nbsp;@@logger&nbsp;=&nbsp;new&nbsp;unless&nbsp;@@logger
&nbsp;&nbsp;&nbsp;&nbsp;@@logger
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
By making <code>Logger</code>'s method <code>new</code> private, we prevent anyone from
creating a logging object using the conventional constructor. Instead, we provide a class method,
<code>Logger#create</code>. This uses the class variable <code>@@logger</code> to
keep a reference to a single instance of the logger, returning that
instance every time it is called.<em>[The implementation of
  singletons that we present here is not thread-safe; if multiple
  threads were running, it would be possible to create multiple logger
  objects. Rather than add thread safety ourselves, however, we'd
  probably use the <code>Singleton</code> mixin supplied with Ruby, which is
  documented on page 472.]</em> We can check this by looking
at the object identifiers the method returns.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
  <td valign="top"><code>Logger.create.id</code></td>
  <td valign="top"></td>
  <td valign="top"><code>537684700</code></td>
</tr>
<tr>
  <td valign="top"><code>Logger.create.id</code></td>
  <td valign="top"></td>
  <td valign="top"><code>537684700</code></td>
</tr>
</table>
<P></P>

<P></P>
Using class methods as pseudo-constructors can also make life easier
for users of your class. As a trivial example, let's look at a class
<code>Shape</code> that represents a regular polygon. Instances of <code>Shape</code>
are created by giving the constructor the required number of sides and 
the total perimeter.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Shape
&nbsp;&nbsp;def&nbsp;initialize(numSides,&nbsp;perimeter)
&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;...
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
However, a couple of years later, this class is used in a different
application, where the programmers are used to creating shapes by
name, and by specifying the length of the side, not the
perimeter. Simply add some class methods to <code>Shape</code>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Shape
&nbsp;&nbsp;def&nbsp;Shape.triangle(sideLength)
&nbsp;&nbsp;&nbsp;&nbsp;Shape.new(3,&nbsp;sideLength*3)
&nbsp;&nbsp;end
&nbsp;&nbsp;def&nbsp;Shape.square(sideLength)
&nbsp;&nbsp;&nbsp;&nbsp;Shape.new(4,&nbsp;sideLength*4)
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
There are many interesting and powerful uses of class methods, but
exploring them won't get our jukebox finished any sooner, so let's
move on.
<h2>Access Control</h2>
<P></P>
When designing a class interface, it's important to consider just how
much access to your class you'll be exposing to the outside world.
Allow too much access into your class, and you risk increasing the
coupling in your application---users of your class will be tempted to
rely on details of your class's implementation, rather than on its
logical interface.  The good news is that the only way to change an
object's state in Ruby is by calling one of its methods.  Control
access to the methods and you've controlled access to the object.
A good rule of thumb is never to expose methods that could leave an
object in an invalid state.  Ruby gives us three levels of protection.
<P></P>
<ul>
<li> <b>Public methods</b> can be called by anyone---there is no
  access control. Methods are public by default (except for
  <code>initialize</code>, which is always private).
</li><li> <b>Protected methods</b> can be invoked only by objects of the
  defining class and its subclasses. Access is kept within the family.
</li><li> <b>Private methods</b> cannot be called with an explicit
  receiver. Because you cannot specify an object when using them,
  private methods can be called only in the defining class and by
  direct descendents within that same object.
</li></ul>
<P></P>
The difference between ``protected'' and ``private'' is fairly subtle,
and is different in Ruby than in most common OO languages. If a method is
protected, it may be called by <em>any</em> instance of the defining
class or its subclasses. If a method is private, it may  be called only
within the context of the calling object---it is never possible to
access another object's private methods directly, even if the object
is of the same class as the caller.
<P></P>
Ruby differs from other OO languages in another important way. Access
control is determined dynamically, as the program runs, not
statically. You will get an access violation only when the code
attempts to execute the restricted method.
<h3>Specifying Access Control</h3>
<P></P>
You specify access levels to methods within class or module
definitions using one or more of the three functions <code>public</code>,
<code>protected</code>, and <code>private</code>. Each function can be used in two
different ways.
<P></P>
If used with no arguments, the three functions set the default access
control of subsequently defined methods. This is probably familiar
behavior if you're a C++ or Java programmer, where you'd use keywords
such as <code>public</code> to achieve the same effect.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;MyClass
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;method1&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;default&nbsp;is&nbsp;'public'
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#...
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;protected&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;subsequent&nbsp;methods&nbsp;will&nbsp;be&nbsp;'protected'
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;method2&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;will&nbsp;be&nbsp;'protected'
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#...
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;private&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;subsequent&nbsp;methods&nbsp;will&nbsp;be&nbsp;'private'
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;method3&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;will&nbsp;be&nbsp;'private'
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#...
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;public&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;subsequent&nbsp;methods&nbsp;will&nbsp;be&nbsp;'public'
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;method4&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;and&nbsp;this&nbsp;will&nbsp;be&nbsp;'public'
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#...
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
Alternatively, you can set access levels of named methods by listing
them as arguments to the access control functions.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;MyClass
<P></P>
&nbsp;&nbsp;def&nbsp;method1
&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;#&nbsp;...&nbsp;and&nbsp;so&nbsp;on
<P></P>
&nbsp;&nbsp;public&nbsp;&nbsp;&nbsp;&nbsp;:method1,&nbsp;:method4
&nbsp;&nbsp;protected&nbsp;:method2
&nbsp;&nbsp;private&nbsp;&nbsp;&nbsp;:method3
end
</pre></td></tr></table>

<P></P>
A class's <code>initialize</code> method is automatically declared 
to be private.
<P></P>
It's time for some examples.  Perhaps we're modeling an accounting
system where every debit has a corresponding credit. Because we want
to ensure that no one can break this rule, we'll make the methods that
do the debits and credits private, and we'll define our external
interface in terms of transactions.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Accounts
<P></P>
&nbsp;&nbsp;private
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;debit(account,&nbsp;amount)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;account.balance&nbsp;-=&nbsp;amount
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;credit(account,&nbsp;amount)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;account.balance&nbsp;+=&nbsp;amount
&nbsp;&nbsp;&nbsp;&nbsp;end
<P></P>
&nbsp;&nbsp;public
<P></P>
&nbsp;&nbsp;&nbsp;&nbsp;#...
&nbsp;&nbsp;&nbsp;&nbsp;def&nbsp;transferToSavings(amount)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;debit(@checking,&nbsp;amount)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;credit(@savings,&nbsp;amount)
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;#...
end
</pre></td></tr></table>

<P></P>
Protected access is used when objects need to access the internal
state of other objects of the same class.  For example, we may want to
allow the individual <code>Account</code> objects to compare their raw
balances, but may want to hide those balances from the rest of the
world (perhaps because we present them in a different form).
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;Account
&nbsp;&nbsp;attr_reader&nbsp;:balance&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;accessor&nbsp;method&nbsp;'balance'
<P></P>
&nbsp;&nbsp;protected&nbsp;:balance&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;and&nbsp;make&nbsp;it&nbsp;protected
<P></P>
&nbsp;&nbsp;def&nbsp;greaterBalanceThan(other)
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;@balance&nbsp;>&nbsp;other.balance
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
Because the attribute <code>balance</code> is protected, it's available
only within <code>Account</code> objects.
<h2>Variables</h2>
<P></P>
Now that we've gone to the trouble to create all these objects,
let's make sure we don't lose them.  Variables are used to keep track
of objects; each variable holds a reference to an object.
<P></P>
<table border="2" width="500" bgcolor="#ffe0e0"><tr><td>Figure not available...</td></tr></table>
<P></P>
Let's confirm this with some code.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>person&nbsp;=&nbsp;"Tim"</code></td>
</tr>
<tr>
  <td valign="top"><code>person.id</code></td>
  <td valign="top"></td>
  <td valign="top"><code>537684980</code></td>
</tr>
<tr>
  <td valign="top"><code>person.type</code></td>
  <td valign="top"></td>
  <td valign="top"><code>String</code></td>
</tr>
<tr>
  <td valign="top"><code>person</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Tim"</code></td>
</tr>
</table>
<P></P>

<P></P>
On the first line, Ruby creates a new <code>String</code> object with the
value ``Tim.'' A reference to this object is placed in the local
variable <code>person</code>.
A quick check shows that the variable has indeed taken on the
personality of a string, with an object id, a type, and a value.
<P></P>
So, is a variable an object?
<P></P>
In Ruby, the answer is ``no.'' A variable is simply a reference to an
object. Objects float around in a big pool somewhere (the heap, most
of the time) and are pointed to by variables.
<P></P>
Let's make the example slightly more complicated.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>person1&nbsp;=&nbsp;"Tim"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>person2&nbsp;=&nbsp;person1</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>person1[0]&nbsp;=&nbsp;'J'</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
  <td valign="top"><code>person1</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Jim"</code></td>
</tr>
<tr>
  <td valign="top"><code>person2</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Jim"</code></td>
</tr>
</table>
<P></P>

<P></P>
What happened here? We changed the first character of
<code>person1</code>, but both <code>person1</code> and <code>person2</code>
changed from ``Tim'' to ``Jim.''
<P></P>
It all comes back to the fact that variables hold references to
objects, not the objects themselves. The assignment of <code>person1</code>
to <code>person2</code> doesn't create any new objects; it simply copies
<code>person1</code>'s object reference to <code>person2</code>, so that both
<code>person1</code> and <code>person2</code> refer to the same object.  We show
this in Figure 3.1 on page 33.
<P></P>
Assignment <em>aliases</em> objects, potentially giving you multiple
variables that reference the same object.
But can't this cause problems in your code?  It can, but not
as often as you'd think (objects in Java, for example, work exactly
the same way).  For instance, in the example in Figure
3.1, you could avoid aliasing by using the <code>dup</code>
method of <code>String</code>, which creates a new <code>String</code> object with identical
contents.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>person1&nbsp;=&nbsp;"Tim"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>person2&nbsp;=&nbsp;person1.dup</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>person1[0]&nbsp;=&nbsp;"J"</code></td>
</tr>
<tr>
  <td valign="top"><code>person1</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Jim"</code></td>
</tr>
<tr>
  <td valign="top"><code>person2</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Tim"</code></td>
</tr>
</table>
<P></P>

<P></P>
You can also prevent anyone from changing a particular object by
freezing it (we talk more about freezing objects
on page 255). Attempt to alter a frozen object, and Ruby
will raise a <code>TypeError</code> exception.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
person1&nbsp;=&nbsp;"Tim"
person2&nbsp;=&nbsp;person1
person1.freeze&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;prevent&nbsp;modifications&nbsp;to&nbsp;the&nbsp;object
person2[0]&nbsp;=&nbsp;"J"
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
prog.rb:4:in&nbsp;`=':&nbsp;can't&nbsp;modify&nbsp;frozen&nbsp;string&nbsp;(TypeError)
	from&nbsp;prog.rb:4
</pre></td></tr></table>


<p></p><hr><table bgcolor="#a03030" cellpadding="10" border="0" cellspacing="0"><tr><td width="33%" align="left"><a class="subheader" href="intro.html">Previous &lt;</a></td><td width="33%" align="center" valign="middle"><a class="subheader" href="index.html">Contents ^</a><br></td><td width="33%" align="right"><a class="subheader" href="tut_containers.html">Next ></a><br></td></tr></table><p></p><font size="-1">Extracted from the book "Programming Ruby -
     The Pragmatic Programmer's Guide"</font><br><font size="-3">
      Copyright
      &#169;
      2000 Addison Wesley Longman, Inc. Released under the terms of the
      <a href="http://www.opencontent.org/openpub/">Open Publication License</a> V1.0.
        <br>
      This reference is available for
        <a href="http://www.pragmaticprogrammer.com/ruby/downloads/book.html">download</a>.
   </font></body></html>