File: tut_containers.html

package info (click to toggle)
rubybook 0.2.1-1
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k, lenny, squeeze, wheezy
  • size: 4,248 kB
  • ctags: 1,042
  • sloc: xml: 60,486; makefile: 25
file content (1164 lines) | stat: -rw-r--r-- 46,166 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
<html><title>Programming Ruby: The Pragmatic Programmer's Guide</title><head><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"><STYLE TYPE="text/css"><!--
       BODY    { margin-left: 1in;
                 width: 6in;
                 font-family: helvetica, arial, sans-serif;
               }
       H1      { color: #000080;
                 font-family: helvetica, arial, sans-serif;
                 font-size: 22pt;
                 margin-left: 0in
               }
       H2      { color: #000080;  font: bold x-large helvetica, sans-serif;
                 margin-left: 0in }
       H3      { color: #000080;  font: bold   large helvetica, sans-serif; }
       H4      { color: #000080;  font: italic large helvetica, sans-serif; }
       .ruby   { background: #fff0f0 }
       .header { color: white }
       .subheader { color: #ffdddd }
       .sidebar   { width: 6in }
       span.sans { font-family: helvetica, arial, sans-serif }
       -->
   </STYLE><table bgcolor="#a03030" cellpadding="3" border="0" cellspacing="0"><tr><td colspan="3"><table bgcolor="#902020" cellpadding="20"><tr><td><h1 class="header">Programming Ruby</h1><h3 class="subheader">The Pragmatic Programmer's Guide</h3></td></tr></table></td></tr><tr><td width="33%" align="left"><a class="subheader" href="tut_classes.html">Previous &lt;</a></td><td width="33%" align="center" valign="middle"><a class="subheader" href="index.html">Contents ^</a><br></td><td width="33%" align="right"><a class="subheader" href="tut_stdtypes.html">Next ></a><br></td></tr></table></head><body bgcolor="white">
<!--
    Copyright (c) 2001 by Addison Wesley Longman.  This
    material may be distributed only subject to the terms and
    conditions set forth in the Open Publication License, v1.0 or
    later (the latest version is presently available at
    http://www.opencontent.org/openpub/).
-->
<h1>Containers, Blocks, and Iterators</h1><hr><br>
A jukebox with one song is unlikely to be popular (except perhaps in
some very, very scary bars), so pretty soon we'll have to start thinking about
producing a catalog of available songs and a playlist of songs waiting
to be played. Both of these are containers: objects that hold
references to one or more other objects.
<P></P>
Both the catalog and the playlist need a similar set of methods: add a
song, remove a song, return a list of songs, and so on. The playlist
may perform additional tasks, such as inserting advertising every so
often or keeping track of cumulative play time, but we'll worry
about these things later. In the meantime, it seems like a good idea
to develop some kind of generic <code>SongList</code> class, which we can
specialize into catalogs and playlists.
<h2>Containers</h2>
<P></P>
Before we start implementing, we'll need to work out how to store the
list of songs inside a <code>SongList</code> object. We have three obvious
choices. We could use the Ruby <code>Array</code> type, use the Ruby <code>Hash</code> type, 
or create our own list structure. Being lazy, for now we'll
look at arrays and hashes, and choose one of these for our class.
<h3>Arrays</h3>
<P></P>
The class <code>Array</code> holds a collection of object references.
Each
object reference occupies a position in the array, identified by a
non-negative integer index.
<P></P>
You can create arrays using literals or by explicitly creating an
<code>Array</code> object. A literal array is simply a list of objects between
square brackets.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>a&nbsp;=&nbsp;[&nbsp;3.14159,&nbsp;"pie",&nbsp;99&nbsp;]</code></td>
</tr>
<tr>
  <td valign="top"><code>a.type</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Array</code></td>
</tr>
<tr>
  <td valign="top"><code>a.length</code></td>
  <td valign="top"></td>
  <td valign="top"><code>3</code></td>
</tr>
<tr>
  <td valign="top"><code>a[0]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>3.14159</code></td>
</tr>
<tr>
  <td valign="top"><code>a[1]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"pie"</code></td>
</tr>
<tr>
  <td valign="top"><code>a[2]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>99</code></td>
</tr>
<tr>
  <td valign="top"><code>a[3]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>nil</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>b&nbsp;=&nbsp;Array.new</code></td>
</tr>
<tr>
  <td valign="top"><code>b.type</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Array</code></td>
</tr>
<tr>
  <td valign="top"><code>b.length</code></td>
  <td valign="top"></td>
  <td valign="top"><code>0</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>b[0]&nbsp;=&nbsp;"second"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>b[1]&nbsp;=&nbsp;"array"</code></td>
</tr>
<tr>
  <td valign="top"><code>b</code></td>
  <td valign="top"></td>
  <td valign="top"><code>["second",&nbsp;"array"]</code></td>
</tr>
</table>
<P></P>

<P></P>
Arrays are indexed using the <code>[]</code> operator.
As with most Ruby
operators, this is actually a method (in class <code>Array</code>) and hence
can be overridden in subclasses. As the example shows, array indices
start at zero. Index an array with a single integer, and it returns
the object at that position or returns <code>nil</code> if nothing's there.
Index an array with a negative integer, and it counts from the
end. This is shown in Figure 4.1 on page 37.
<P></P>
<table border="2" width="500" bgcolor="#ffe0e0"><tr><td>Figure not available...</td></tr></table>
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>a&nbsp;=&nbsp;[&nbsp;1,&nbsp;3,&nbsp;5,&nbsp;7,&nbsp;9&nbsp;]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[-1]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>9</code></td>
</tr>
<tr>
  <td valign="top"><code>a[-2]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>7</code></td>
</tr>
<tr>
  <td valign="top"><code>a[-99]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>nil</code></td>
</tr>
</table>
<P></P>

<P></P>
You can also index arrays with a pair of numbers, <code>[start,&nbsp;count]</code>.
This returns a new array consisting of references to <code>count</code> objects
starting at position <code>start</code>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>a&nbsp;=&nbsp;[&nbsp;1,&nbsp;3,&nbsp;5,&nbsp;7,&nbsp;9&nbsp;]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[1,&nbsp;3]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[3,&nbsp;5,&nbsp;7]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[3,&nbsp;1]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[7]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[-3,&nbsp;2]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[5,&nbsp;7]</code></td>
</tr>
</table>
<P></P>

<P></P>
Finally, you can index arrays using ranges, in which start and end
positions are separated by two or three periods. The two-period form
includes the end position, while the three-period form does not.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>a&nbsp;=&nbsp;[&nbsp;1,&nbsp;3,&nbsp;5,&nbsp;7,&nbsp;9&nbsp;]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[1..3]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[3,&nbsp;5,&nbsp;7]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[1...3]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[3,&nbsp;5]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[3..3]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[7]</code></td>
</tr>
<tr>
  <td valign="top"><code>a[-3..-1]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>[5,&nbsp;7,&nbsp;9]</code></td>
</tr>
</table>
<P></P>

<P></P>
The <code>[]</code> operator has a corresponding <code>[]=</code> operator, which
lets you set elements in the array. If used with a single integer
index, the element at that position is replaced by whatever is on the
right-hand side of the assignment. Any gaps that result will be filled
with <code>nil</code>.
<P></P>

  <table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3">
<tr>
  <td valign="top">a = [ 1, 3, 5, 7, 9 ]</td>
  <td valign="top"></td>
  <td valign="top">[1, 3, 5, 7, 9]</td>
</tr>
<tr>
  <td valign="top">a[1] = 'bat'</td>
  <td valign="top"></td>
  <td valign="top">[1, "bat", 5, 7, 9]</td>
</tr>
<tr>
  <td valign="top">a[-3] = 'cat'</td>
  <td valign="top"></td>
  <td valign="top">[1, "bat", "cat", 7, 9]</td>
</tr>
<tr>
  <td valign="top">a[3]  = [ 9, 8 ]</td>
  <td valign="top"></td>
  <td valign="top">[1, "bat", "cat", [9, 8], 9]</td>
</tr>
<tr>
  <td valign="top">a[6]  = 99</td>
  <td valign="top"></td>
  <td valign="top">[1, "bat", "cat", [9, 8], 9, nil, 99]</td>
</tr>
</table>
<P></P>

<P></P>
If the index to <code>[]=</code> is two numbers (a start and a length) or a
range, then those elements in the original array are replaced by
whatever is on the right-hand side of the assignment. If the length is
zero, the right-hand side is inserted into the array before the start
position; no elements are removed. If the right-hand side is itself an
array, its elements are used in the replacement.
The array size is automatically adjusted if the index selects a
different number of elements than are available on the right-hand side
of the assignment.
<P></P>

  <table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3">
<tr>
  <td valign="top">a = [ 1, 3, 5, 7, 9 ]</td>
  <td valign="top"></td>
  <td valign="top">[1, 3, 5, 7, 9]</td>
</tr>
<tr>
  <td valign="top">a[2, 2] = 'cat'</td>
  <td valign="top"></td>
  <td valign="top">[1, 3, "cat", 9]</td>
</tr>
<tr>
  <td valign="top">a[2, 0] = 'dog'</td>
  <td valign="top"></td>
  <td valign="top">[1, 3, "dog", "cat", 9]</td>
</tr>
<tr>
  <td valign="top">a[1, 1] = [ 9, 8,  7 ]</td>
  <td valign="top"></td>
  <td valign="top">[1, 9, 8, 7, "dog", "cat", 9]</td>
</tr>
<tr>
  <td valign="top">a[0..3] = []</td>
  <td valign="top"></td>
  <td valign="top">["dog", "cat", 9]</td>
</tr>
<tr>
  <td valign="top">a[5]    = 99</td>
  <td valign="top"></td>
  <td valign="top">["dog", "cat", 9, nil, nil, 99]</td>
</tr>
</table>
<P></P>

<P></P>
Arrays have a large number of other useful methods. Using these,
you can treat arrays as stacks, sets, queues,
dequeues, and fifos. A complete list of array methods starts
on page 282.
<h3>Hashes</h3>
<P></P>
Hashes (sometimes known as associative arrays or dictionaries) are
similar to arrays, in that they are indexed collectives of object
references.
<P></P>
However, while you index arrays with integers, you can
index a hash with objects of any type: strings, regular expressions,
and so on. When you store a value in a hash, you actually supply two
objects---the key and the value. You can subsequently retrieve the
value by indexing the hash with the same key. The values in a hash can
be any objects of any type. The example that follows uses hash literals: a
list of <em>key</em>&nbsp;<code>=></code>&nbsp;<em>value</em> pairs between braces.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>h&nbsp;=&nbsp;{&nbsp;'dog'&nbsp;=>&nbsp;'canine',&nbsp;'cat'&nbsp;=>&nbsp;'feline',&nbsp;'donkey'&nbsp;=>&nbsp;'asinine'&nbsp;}</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
  <td valign="top"><code>h.length</code></td>
  <td valign="top"></td>
  <td valign="top"><code>3</code></td>
</tr>
<tr>
  <td valign="top"><code>h['dog']</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"canine"</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>h['cow']&nbsp;=&nbsp;'bovine'</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>h[12]&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;'dodecine'</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>h['cat']&nbsp;=&nbsp;99</code></td>
</tr>
<tr>
  <td valign="top"><code>h</code></td>
  <td valign="top"></td>
  <td valign="top"><code>{"cow"=>"bovine",&nbsp;12=>"dodecine",&nbsp;"dog"=>"canine",&nbsp;"donkey"=>"asinine",&nbsp;"cat"=>99}</code></td>
</tr>
</table>
<P></P>

<P></P>
Compared with arrays, hashes have one significant advantage: they can
use any object as an index. However, they also have a significant
disadvantage: their elements are not ordered, so you cannot easily use 
a hash as a stack or a queue.
<P></P>
You'll find that hashes are one of the most commonly used data
structures in Ruby. A full list of the methods implemented by class
<code>Hash</code> starts on page 321.
<h3>Implementing a SongList Container</h3>
<P></P>
After that little diversion into arrays and hashes, we're now ready to
implement the jukebox's <code>SongList</code>.  Let's invent a basic list of
methods we need in our <code>SongList</code>. We'll want to add to it as we go
along, but it will do for now.
<P></P>
<dl>
  <dt>append( aSong )  list</dt><dd>
  Append the given song to the list.
  </dd><dt>deleteFirst()  aSong</dt><dd>
  Remove the first song from the list, returning that song.
  </dd><dt>deleteLast()  aSong</dt><dd>
  Remove the last song from the list, returning that song.
  </dd><dt>[ anIndex }  aSong</dt><dd>
  Return the song identified by <i>anIndex</i>, which may be an
  integer index or a song title.
</dd></dl>
<P></P>
This list gives us a clue to the implementation. The ability to append
songs at the end, and remove them from both the front and end, suggests a
dequeue---a double-ended queue---which we know we can implement using
an <code>Array</code>. Similarly, the ability to return a song at an integer
position in the list is supported by arrays.
<P></P>
However, there's also the 
need to be able to retrieve songs by title, which might suggest using a
hash, with the title as a key and the song as a value. Could we use a
hash? Well, possibly, but there are problems. First a hash is
unordered, so we'd probably need to use an ancillary array to keep
track of the list. A bigger problem is that a hash does not support
multiple keys with the same value. That would be a problem for our
playlist, where the same song might be queued up for playing multiple
times. So, for now we'll stick with an array of songs, searching it
for titles when needed. If this becomes a performance bottleneck, we
can always add some kind of hash-based lookup later.
<P></P>
We'll start our class with a basic <code>initialize</code> method, which
creates the <code>Array</code> we'll use to hold the songs and stores a
reference to it in the instance variable <code>@songs</code>.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;initialize
&nbsp;&nbsp;&nbsp;&nbsp;@songs&nbsp;=&nbsp;Array.new
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
The <code>SongList#append</code> method adds the given song to the end of the 
<code>@songs</code> array. It also returns <i>self</i>, a reference to the
current <code>SongList</code> object. This is a useful convention, as it lets
us chain together multiple calls to <code>append</code>. We'll see an
example of this later.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;append(aSong)
&nbsp;&nbsp;&nbsp;&nbsp;@songs.push(aSong)
&nbsp;&nbsp;&nbsp;&nbsp;self
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
Then we'll add the <code>deleteFirst</code> and <code>deleteLast</code>
methods, trivially implemented using <a href="ref_c_array.html#shift"><code>Array#shift</code></a> and
<a href="ref_c_array.html#pop"><code>Array#pop</code></a>, respectively.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;deleteFirst
&nbsp;&nbsp;&nbsp;&nbsp;@songs.shift
&nbsp;&nbsp;end
&nbsp;&nbsp;def&nbsp;deleteLast
&nbsp;&nbsp;&nbsp;&nbsp;@songs.pop
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
At this point, a quick test might be in order. First, we'll append
four songs to the list. Just to show off, we'll use the fact that
<code>append</code> returns the <code>SongList</code> object to chain together
these method calls.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
list&nbsp;=&nbsp;SongList.new
list.
&nbsp;&nbsp;append(Song.new('title1',&nbsp;'artist1',&nbsp;1)).
&nbsp;&nbsp;append(Song.new('title2',&nbsp;'artist2',&nbsp;2)).
&nbsp;&nbsp;append(Song.new('title3',&nbsp;'artist3',&nbsp;3)).
&nbsp;&nbsp;append(Song.new('title4',&nbsp;'artist4',&nbsp;4))
</pre></td></tr></table>

<P></P>
Then we'll check that songs are taken from the start and end of the
list correctly, and that <code>nil</code> is returned when the list becomes
empty.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
  <td valign="top"><code>list.deleteFirst</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title1--artist1&nbsp;(1)</code></td>
</tr>
<tr>
  <td valign="top"><code>list.deleteFirst</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title2--artist2&nbsp;(2)</code></td>
</tr>
<tr>
  <td valign="top"><code>list.deleteLast</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title4--artist4&nbsp;(4)</code></td>
</tr>
<tr>
  <td valign="top"><code>list.deleteLast</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title3--artist3&nbsp;(3)</code></td>
</tr>
<tr>
  <td valign="top"><code>list.deleteLast</code></td>
  <td valign="top"></td>
  <td valign="top"><code>nil</code></td>
</tr>
</table>
<P></P>

<P></P>
So far so good. Our next method is <code>[]</code>, which accesses elements
by index. If the index is a number (which we check using
<a href="ref_c_object.html#kind_of_qm"><code>Object#kind_of?</code></a>), we just return the
element at that position.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;[](key)
&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;key.kind_of?(Integer)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;@songs[key]
&nbsp;&nbsp;&nbsp;&nbsp;else
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;...
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
Again, testing this is pretty trivial.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
  <td valign="top"><code>list[0]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title1--artist1&nbsp;(1)</code></td>
</tr>
<tr>
  <td valign="top"><code>list[2]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>Song:&nbsp;title3--artist3&nbsp;(3)</code></td>
</tr>
<tr>
  <td valign="top"><code>list[9]</code></td>
  <td valign="top"></td>
  <td valign="top"><code>nil</code></td>
</tr>
</table>
<P></P>

<P></P>
Now we need to add the facility that lets us look up a song by
title. This is going to involve scanning through the songs in the
list, checking the title of each. To do this, we first need to spend a 
couple of pages looking at one of Ruby's neatest features: iterators.<h2>Blocks and Iterators</h2>
<P></P>
So, our next problem with <code>SongList</code> is to implement the code in
method <code>[]</code> that takes a string and searches for a song with
that title. This seems straightforward: we have an array of songs, so
we just go through it one element at a time, looking for a match.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;[](key)
&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;key.kind_of?(Integer)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;@songs[key]
&nbsp;&nbsp;&nbsp;&nbsp;else
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;for&nbsp;i&nbsp;in&nbsp;0...@songs.length
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;@songs[i]&nbsp;if&nbsp;key&nbsp;==&nbsp;@songs[i].name
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;nil
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
This works, and it looks comfortingly familiar: a <code>for</code> loop
iterating over an array. What could be more natural?
<P></P>
It turns out there <em>is</em> something more natural. In a way,
our <code>for</code> loop is somewhat too intimate with the array; it asks for
a length, then retrieves values in turn until it finds a match. Why
not just ask the array to apply a test to each of its members?
That's just what the <code>find</code> method in <code>Array</code> does.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;[](key)
&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;key.kind_of?(Integer)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;result&nbsp;=&nbsp;@songs[key]
&nbsp;&nbsp;&nbsp;&nbsp;else
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;result&nbsp;=&nbsp;@songs.find&nbsp;{&nbsp;|aSong|&nbsp;key&nbsp;==&nbsp;aSong.name&nbsp;}
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;result
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
We could use <code>if</code> as a statement modifier to shorten the
code even more.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;SongList
&nbsp;&nbsp;def&nbsp;[](key)
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;@songs[key]&nbsp;if&nbsp;key.kind_of?(Integer)
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;@songs.find&nbsp;{&nbsp;|aSong|&nbsp;aSong.name&nbsp;==&nbsp;key&nbsp;}
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<P></P>
The method <code>find</code> is an iterator---a method that invokes a
block of code repeatedly. Iterators and code blocks are among the
more interesting features of Ruby, so let's spend a while looking into
them (and in the process we'll find out exactly what that line of code
in our <code>[]</code> method actually does).
<h3>Implementing Iterators</h3>
<P></P>
A Ruby iterator is simply a method that can invoke a block of code.
At first sight, a block in Ruby looks just like a block in C, Java,
or Perl. Unfortunately, in this case looks are deceiving---a Ruby
block <em>is</em> a way of grouping statements, but not in the
conventional way.
<P></P>
First, a block may appear only in the source adjacent to a method
call; the block is written starting on the same line as the method's
last parameter. Second, the code in the block is not executed at the
time it is encountered. Instead, Ruby remembers the context in which
the block appears (the local variables, the current object, and so
on), and then enters the method. This is where the magic starts.
<P></P>
Within the method, the block may be invoked, almost as if it were a
method itself, using the <code>yield</code> statement.
Whenever a <code>yield</code>
is executed, it invokes the code in the block. When the block
exits, control picks back up immediately after the
<code>yield</code>.<em>[Programming-language buffs will be pleased to
  know that the keyword <code>yield</code> was chosen to echo the <code>yield</code>
  function in Liskov's language CLU, a language that is over 20
  years old and yet contains features that still haven't been widely
  exploited by the CLU-less.]</em>  Let's start with a trivial example.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
def&nbsp;threeTimes
&nbsp;&nbsp;yield
&nbsp;&nbsp;yield
&nbsp;&nbsp;yield
end
threeTimes&nbsp;{&nbsp;puts&nbsp;"Hello"&nbsp;}
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
Hello
Hello
Hello
</pre></td></tr></table>

<P></P>
The block (the code between the braces) is associated with the call to
the method <code>threeTimes</code>. Within this method, <code>yield</code> is
called three times in a row. Each time, it invokes the code in the
block, and a cheery greeting is printed. What makes blocks interesting,
however, is that you can pass parameters to them and receive values
back from them. For example, we could write a simple function that
returns members of the Fibonacci series up to a certain
value.<em>[The basic Fibonacci series is a sequence of integers,
  starting with two 1's, in which each subsequent term is the sum
  of the two preceding terms. The series is sometimes used in sorting
  algorithms and in analyzing natural phenomena.]</em>
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
def&nbsp;fibUpTo(max)
&nbsp;&nbsp;i1,&nbsp;i2&nbsp;=&nbsp;1,&nbsp;1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;parallel&nbsp;assignment
&nbsp;&nbsp;while&nbsp;i1&nbsp;&lt;=&nbsp;max
&nbsp;&nbsp;&nbsp;&nbsp;yield&nbsp;i1
&nbsp;&nbsp;&nbsp;&nbsp;i1,&nbsp;i2&nbsp;=&nbsp;i2,&nbsp;i1+i2
&nbsp;&nbsp;end
end
fibUpTo(1000)&nbsp;{&nbsp;|f|&nbsp;print&nbsp;f,&nbsp;"&nbsp;"&nbsp;}
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
1&nbsp;1&nbsp;2&nbsp;3&nbsp;5&nbsp;8&nbsp;13&nbsp;21&nbsp;34&nbsp;55&nbsp;89&nbsp;144&nbsp;233&nbsp;377&nbsp;610&nbsp;987
</pre></td></tr></table>

<P></P>
In this example, the <code>yield</code> statement has a parameter.
This value
is passed to the associated block. In the definition of the block, the
argument list appears between vertical bars. In this instance, the
variable <code>f</code> receives the value passed to the <code>yield</code>, so the
block prints successive members of the series. (This example also
shows parallel assignment in action. We'll come back to this
on page 77.)  Although it is common to pass just one
value to a block, this is not a requirement; a block may have any
number of arguments. What happens if a block has a different number
of parameters than are given to the yield? By a staggering
coincidence, the rules we discuss under parallel assignment come into
play (with a slight twist: multiple parameters passed to a <code>yield</code>
are converted to an array if the block has just one argument).
<P></P>
Parameters to a block may be existing local variables; if so, the new value of the variable will be
retained after the block completes.  This may lead to unexpected
behavior, but there is also a performance gain to be had by using
variables that already exist.<em>[For more information on this
  and other ``gotchas,'' see the list beginning
  on page 129; more performance information begins
  on page 130.]</em>
<P></P>
A block may also return a value to the method. The value of the last
expression evaluated in the block is passed back to the method as the
value of the <code>yield</code>. This is how the <code>find</code> method used by class
<code>Array</code> works.<em>[The <code>find</code> method is actually defined
  in module <code>Enumerable</code>, which is mixed into class <code>Array</code>.]</em> Its
implementation would look something like the following.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Array</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;find</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;for&nbsp;i&nbsp;in&nbsp;0...size</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;value&nbsp;=&nbsp;self[i]</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;value&nbsp;if&nbsp;yield(value)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;nil</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
  <td valign="top"><code>[1,&nbsp;3,&nbsp;5,&nbsp;7,&nbsp;9].find&nbsp;{|v|&nbsp;v*v&nbsp;>&nbsp;30&nbsp;}</code></td>
  <td valign="top"></td>
  <td valign="top"><code>7</code></td>
</tr>
</table>
<P></P>

<P></P>
This passes successive elements of the array to the associated block. If
the block returns <code>true</code>, the method returns the corresponding
element. If no element matches, the method returns <code>nil</code>. The example shows
the benefit of this approach to iterators. The <code>Array</code> class does
what it does best, accessing array elements, leaving the application
code to concentrate on its particular requirement (in this case,
finding an entry that meets some mathematical criteria).
<P></P>
Some iterators are common to many types of Ruby collections. We've
looked at <code>find</code> already. Two others are <code>each</code> and
<code>collect</code>.
<code>each</code> is probably the simplest iterator---all it does is yield
successive elements of its collection.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
[&nbsp;1,&nbsp;3,&nbsp;5&nbsp;].each&nbsp;{&nbsp;|i|&nbsp;puts&nbsp;i&nbsp;}
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
1
3
5
<P></P>
</pre></td></tr></table>

<P></P>
The <code>each</code> iterator has a special place in Ruby;
on page
87 we'll describe how it's used as the basis of the
language's <code>for</code> loop, and starting on page 104 we'll see how
defining an <code>each</code> method can add a whole lot more
functionality to your class for free.
<P></P>
Another common iterator is <code>collect</code>, which takes each element
from the collection and passes it to the block. The results returned
by the block are
used to construct a new array.  For instance:
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
  <td valign="top"><code>["H",&nbsp;"A",&nbsp;"L"].collect&nbsp;{&nbsp;|x|&nbsp;x.succ&nbsp;}</code></td>
  <td valign="top"></td>
  <td valign="top"><code>["I",&nbsp;"B",&nbsp;"M"]</code></td>
</tr>
</table>
<P></P>

<h3>Ruby Compared with C++ and Java</h3>
<P></P>
It's worth spending a paragraph comparing Ruby's approach to iterators
to that of C++ and Java. In the Ruby approach, the iterator is simply
a method, identical to any other, that happens to call <code>yield</code>
whenever it generates a new value. The thing that uses the iterator is
simply a block of code associated with this method. There is no need
to generate helper classes to carry the iterator state, as in Java and
C++. In this, as in many other ways, Ruby is a transparent
language.
When you write a Ruby program, you concentrate on getting
the job done, not on building scaffolding to support the language
itself.
<P></P>
Iterators are not limited to accessing existing data in arrays and
hashes. As we saw in the Fibonacci example, an iterator can return
derived values. This capability is used by the Ruby input/output
classes, which implement
an iterator interface returning successive lines (or bytes) in an I/O
stream.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
f&nbsp;=&nbsp;File.open("testfile")
f.each&nbsp;do&nbsp;|line|
&nbsp;&nbsp;print&nbsp;line
end
f.close
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
This&nbsp;is&nbsp;line&nbsp;one
This&nbsp;is&nbsp;line&nbsp;two
This&nbsp;is&nbsp;line&nbsp;three
And&nbsp;so&nbsp;on...
</pre></td></tr></table>

<P></P>
Let's look at just one more iterator implementation. The Smalltalk
language also supports iterators over collections. If you ask 
Smalltalk programmers to sum the elements in an array, it's likely that
they'd use the <code>inject</code> function.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
sumOfValues&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"Smalltalk&nbsp;method"
&nbsp;&nbsp;&nbsp;&nbsp;^self&nbsp;values
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;inject:&nbsp;0
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;into:&nbsp;[&nbsp;:sum&nbsp;:element&nbsp;|&nbsp;sum&nbsp;+&nbsp;element&nbsp;value]
</pre></td></tr></table>

<P></P>
<code>inject</code> works like this. The first time the associated block
is called, <code>sum</code> is set to <code>inject</code>'s parameter (zero in this case),
and <code>element</code> is set to the first element in the array. The second
and subsequent times the block is called, <code>sum</code> is set to the
value returned by the block on the previous call. This way, <code>sum</code>
can be used to keep a running total. The final value of <code>inject</code> is the
value returned by the block the last time it was called.
<P></P>
Ruby does not have an <code>inject</code> method, but
it's easy to write one. In this case we'll add it to the <code>Array</code>
class, while on page 102 we'll see how to make it more
generally available.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>class&nbsp;Array</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;inject(n)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;each&nbsp;{&nbsp;|value|&nbsp;n&nbsp;=&nbsp;yield(n,&nbsp;value)&nbsp;}</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;n</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;sum</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;inject(0)&nbsp;{&nbsp;|n,&nbsp;value|&nbsp;n&nbsp;+&nbsp;value&nbsp;}</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;def&nbsp;product</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;&nbsp;&nbsp;inject(1)&nbsp;{&nbsp;|n,&nbsp;value|&nbsp;n&nbsp;*&nbsp;value&nbsp;}</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
  <td valign="top"><code>[&nbsp;1,&nbsp;2,&nbsp;3,&nbsp;4,&nbsp;5&nbsp;].sum</code></td>
  <td valign="top"></td>
  <td valign="top"><code>15</code></td>
</tr>
<tr>
  <td valign="top"><code>[&nbsp;1,&nbsp;2,&nbsp;3,&nbsp;4,&nbsp;5&nbsp;].product</code></td>
  <td valign="top"></td>
  <td valign="top"><code>120</code></td>
</tr>
</table>
<P></P>

<P></P>
Although blocks are often the target of an iterator, they also have
other uses. Let's look at a few.
<h3>Blocks for Transactions</h3>
<P></P>
Blocks can be used to define a chunk of code that must be run under
some kind of transactional control.
For example, you'll often open a
file, do something with its contents, and then want to ensure that the
file is closed when you finish. Although you can do this using
conventional code, there's an argument for making the file responsible
for closing itself. We can do this with blocks. A naive implementation 
(ignoring error handling) might look something like the following.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;File
&nbsp;&nbsp;def&nbsp;File.openAndProcess(*args)
&nbsp;&nbsp;&nbsp;&nbsp;f&nbsp;=&nbsp;File.open(*args)
&nbsp;&nbsp;&nbsp;&nbsp;yield&nbsp;f
&nbsp;&nbsp;&nbsp;&nbsp;f.close()
&nbsp;&nbsp;end
end
<P></P>
File.openAndProcess("testfile",&nbsp;"r")&nbsp;do&nbsp;|aFile|
&nbsp;&nbsp;print&nbsp;while&nbsp;aFile.gets
end
</pre></td></tr></table>

<em>produces:</em>
<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
This&nbsp;is&nbsp;line&nbsp;one
This&nbsp;is&nbsp;line&nbsp;two
This&nbsp;is&nbsp;line&nbsp;three
And&nbsp;so&nbsp;on...
</pre></td></tr></table>

<P></P>
This small example illustrates a number of techniques. The
<code>openAndProcess</code> method is a <em>class method</em>---it may be
called independent of any particular <code>File</code> object. We want it to
take the same arguments as the conventional <a href="ref_c_file.html#open"><code>File::open</code></a> method,
but we don't really care what those arguments are. Instead, we
specified the arguments as <code>*args</code>, meaning ``collect the actual
parameters passed to the method into an array.'' We then call
<code>File.open</code>, passing it <code>*args</code> as a parameter. This expands the
array back into individual parameters. The net result is that
<code>openAndProcess</code> transparently passes whatever parameters it
received to <a href="ref_c_file.html#open"><code>File::open</code></a>.
<P></P>
Once the file has been opened, <code>openAndProcess</code> calls <code>yield</code>,
passing the open file object to the block. When the block returns, the 
file is closed. In this way, the responsibility for closing an open
file has been passed from the user of file objects back to the files
themselves.
<P></P>
Finally, this example uses <code>do</code>...<code>end</code> to define a block. The only
difference between this notation and using braces to define blocks is
precedence: <code>do</code>...<code>end</code> binds lower than ``{...}''. We
discuss the impact of this on page 236.
<P></P>
The technique of having files manage their own lifecycle is so useful
that the class <code>File</code> supplied with Ruby supports it directly. If
<a href="ref_c_file.html#open"><code>File::open</code></a> has an associated block, then that block will be
invoked with a file object, and the file will be closed when the block
terminates. This is interesting, as it means that <a href="ref_c_file.html#open"><code>File::open</code></a> has
two different behaviors: when called with a block, it executes the
block and closes the file. When called without a block, it returns the 
file object. This is made possible by the method
<a href="ref_m_kernel.html#block_given_qm"><code>Kernel::block_given?</code></a>, which returns <code>true</code> if a block is associated
with the current method. Using it, you could implement <a href="ref_c_file.html#open"><code>File::open</code></a> 
(again, ignoring error handling) using something like the following.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;File
&nbsp;&nbsp;def&nbsp;File.myOpen(*args)
&nbsp;&nbsp;&nbsp;&nbsp;aFile&nbsp;=&nbsp;File.new(*args)
&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;If&nbsp;there's&nbsp;a&nbsp;block,&nbsp;pass&nbsp;in&nbsp;the&nbsp;file&nbsp;and&nbsp;close
&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;the&nbsp;file&nbsp;when&nbsp;it&nbsp;returns
&nbsp;&nbsp;&nbsp;&nbsp;if&nbsp;block_given?
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;yield&nbsp;aFile
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;aFile.close
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;aFile&nbsp;=&nbsp;nil
&nbsp;&nbsp;&nbsp;&nbsp;end
&nbsp;&nbsp;&nbsp;&nbsp;return&nbsp;aFile
&nbsp;&nbsp;end
end
</pre></td></tr></table>

<h3>Blocks Can Be Closures</h3>
<P></P>
Let's get back to our jukebox for a moment (remember the
jukebox?).
At some point we'll be working on the code that handles the 
user interface---the buttons that people press to select songs and
control the jukebox. We'll need to associate actions with those
buttons: press <font size="-2">STOP</font> and the music stops. It turns out that
Ruby's blocks are a convenient way to do this. Let's start out by
assuming that the people who made the hardware implemented a Ruby
extension that gives us a basic button
class. (We talk about extending Ruby beginning on page 171.)
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
bStart&nbsp;=&nbsp;Button.new("Start")
bPause&nbsp;=&nbsp;Button.new("Pause")
#&nbsp;...
</pre></td></tr></table>

<P></P>
What happens when the user presses one of our buttons? In the
<code>Button</code> class, the hardware folks rigged things so that a
callback method, <code>buttonPressed</code>, will be invoked. 
The obvious way of adding functionality to these buttons is to create
subclasses of <code>Button</code> and have each subclass implement its own
<code>buttonPressed</code> method.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;StartButton&nbsp;&lt;&nbsp;Button
&nbsp;&nbsp;def&nbsp;initialize
&nbsp;&nbsp;&nbsp;&nbsp;super("Start")&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;invoke&nbsp;Button's&nbsp;initialize
&nbsp;&nbsp;end
&nbsp;&nbsp;def&nbsp;buttonPressed
&nbsp;&nbsp;&nbsp;&nbsp;#&nbsp;do&nbsp;start&nbsp;actions...
&nbsp;&nbsp;end
end
<P></P>
bStart&nbsp;=&nbsp;StartButton.new
</pre></td></tr></table>

<P></P>
There are two problems here. First, this will lead to a large number
of subclasses. If the interface to <code>Button</code> changes, this could
involve us in a lot of maintenance. Second, the actions performed when 
a button is pressed are expressed at the wrong level; they are not a
feature of the button, but are a feature of the jukebox that uses the
buttons. We can fix both of these problems using blocks.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="400"><tr><td><pre>
class&nbsp;JukeboxButton&nbsp;&lt;&nbsp;Button
&nbsp;&nbsp;def&nbsp;initialize(label,&nbsp;&amp;action)
&nbsp;&nbsp;&nbsp;&nbsp;super(label)
&nbsp;&nbsp;&nbsp;&nbsp;@action&nbsp;=&nbsp;action
&nbsp;&nbsp;end
&nbsp;&nbsp;def&nbsp;buttonPressed
&nbsp;&nbsp;&nbsp;&nbsp;@action.call(self)
&nbsp;&nbsp;end
end
<P></P>
bStart&nbsp;=&nbsp;JukeboxButton.new("Start")&nbsp;{&nbsp;songList.start&nbsp;}
bPause&nbsp;=&nbsp;JukeboxButton.new("Pause")&nbsp;{&nbsp;songList.pause&nbsp;}
</pre></td></tr></table>

<P></P>
The key to all this is the second parameter to
<code>JukeboxButton#initialize</code>. If the last parameter in a method
definition is prefixed with an ampersand (such as <code>&amp;action</code>),
Ruby
looks for a code block whenever that method is called. That code block
is converted to an object of class <code>Proc</code> and assigned to the
parameter. You can then treat the parameter as any other variable. In
our example, we assigned it to the instance variable <code>@action</code>.
When the callback method <code>buttonPressed</code> is invoked, we use the
<a href="ref_c_proc.html#call"><code>Proc#call</code></a> method on that object to invoke the block.
<P></P>
So what exactly do we have when we create a <code>Proc</code> object? The
interesting thing is that it's more than just a chunk of code.
Associated with a block (and hence a <code>Proc</code> object) is all the
context in which the block was <em>defined</em>: the value of
<code>self</code>, and the methods, variables, and constants in scope. Part
of the magic of Ruby is that the block can still use all this original
scope information even if the environment in which it was defined
would otherwise have disappeared.  In other languages, this facility
is called a <em>closure</em>.
<P></P>
Let's look at a contrived example. This example uses the method
<code>proc</code>,
which converts a block to a <code>Proc</code> object.
<P></P>

<table bgcolor="#fff0f0" cellspacing="0" border="0" cellpadding="3" width="500">
<tr>
<td colspan="3" valign="top"><code>def&nbsp;nTimes(aThing)</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>&nbsp;&nbsp;return&nbsp;proc&nbsp;{&nbsp;|n|&nbsp;aThing&nbsp;*&nbsp;n&nbsp;}</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>end</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code></code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>p1&nbsp;=&nbsp;nTimes(23)</code></td>
</tr>
<tr>
  <td valign="top"><code>p1.call(3)</code></td>
  <td valign="top"></td>
  <td valign="top"><code>69</code></td>
</tr>
<tr>
  <td valign="top"><code>p1.call(4)</code></td>
  <td valign="top"></td>
  <td valign="top"><code>92</code></td>
</tr>
<tr>
<td colspan="3" valign="top"><code>p2&nbsp;=&nbsp;nTimes("Hello&nbsp;")</code></td>
</tr>
<tr>
  <td valign="top"><code>p2.call(3)</code></td>
  <td valign="top"></td>
  <td valign="top"><code>"Hello&nbsp;Hello&nbsp;Hello&nbsp;"</code></td>
</tr>
</table>
<P></P>

<P></P>
The method <code>nTimes</code> returns a <code>Proc</code> object that references
the method's parameter, <code>aThing</code>. Even though that parameter is out 
of scope by the time the block is called, the parameter remains
accessible to the block.
<P></P>

<p></p><hr><table bgcolor="#a03030" cellpadding="10" border="0" cellspacing="0"><tr><td width="33%" align="left"><a class="subheader" href="tut_classes.html">Previous &lt;</a></td><td width="33%" align="center" valign="middle"><a class="subheader" href="index.html">Contents ^</a><br></td><td width="33%" align="right"><a class="subheader" href="tut_stdtypes.html">Next ></a><br></td></tr></table><p></p><font size="-1">Extracted from the book "Programming Ruby -
     The Pragmatic Programmer's Guide"</font><br><font size="-3">
      Copyright
      &#169;
      2000 Addison Wesley Longman, Inc. Released under the terms of the
      <a href="http://www.opencontent.org/openpub/">Open Publication License</a> V1.0.
        <br>
      This reference is available for
        <a href="http://www.pragmaticprogrammer.com/ruby/downloads/book.html">download</a>.
   </font></body></html>