File: classes.xml

package info (click to toggle)
rubybook 0.2.1-1
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k, lenny, squeeze, wheezy
  • size: 4,248 kB
  • ctags: 1,042
  • sloc: xml: 60,486; makefile: 25
file content (1189 lines) | stat: -rw-r--r-- 37,150 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
<ppdoc>
<copyright>
    Copyright (c) 2001 by Addison Wesley Longman.  This
    material may be distributed only subject to the terms and
    conditions set forth in the Open Publication License, v1.0 or
    later (the latest version is presently available at
    http://www.opencontent.org/openpub/).
</copyright>
<chapter name="Classes and Objects">
<p/>
Classes and objects are obviously central to Ruby, but at first sight
they can seem a little confusing. There seem to be a lot of concepts:
classes, objects, class objects, instance methods, class methods, and
singleton classes. In reality, however, Ruby has just a single
underlying class and object structure, which we'll discuss in this
chapter. In fact, the basic model is so simple, we can describe it in
a single paragraph.
<p/>
A Ruby object has three components: a set of flags,
some instance variables, and an associated class. A Ruby class is an
object of class <classname>Class</classname>, which contains all the object things plus a
list of methods and a reference to a superclass (which is itself
another class). All method calls in Ruby nominate a receiver (which is
by default <var>self</var>, the current object).
Ruby finds the method to
invoke by looking at the list of methods in the receiver's class. If
it doesn't find the method there, it looks in the superclass, and then 
in the superclass's
superclass, and so on. If the method cannot be found in the receiver's
class or any of its ancestors, Ruby invokes the method
<meth>method_missing</meth> on the original receiver.
<p/>
And that's it---the entire explanation. On to the next chapter.
<p/>
``But wait,'' you cry, ``I spent good money on this chapter. What
about all this other stuff---singleton classes, class methods, and so
on. How do they work?''
<p/>
Good question.
<section>How Classes and Objects Interact</section>
<p/>
All class/object interactions are explained using the simple model
given above: objects reference classes, and
classes reference zero or more superclasses. However, the
implementation details can get a tad tricky.
<p/>
We've found that the simplest way of visualizing all this is to draw
the actual objects that Ruby implements. So, in the following pages
we'll look at all the possible combinations of classes and
objects. Note that these are not class diagrams in the UML sense;
we're showing structures in memory and pointers between them.
<subsection>Your Basic, Everyday Object</subsection>
<p/>
Let's start by looking at an object created from a simple
class. Figure 19.1 on page 243 shows
an object referenced by a variable, <tt>lucille</tt>, the object's class,
<classname>Guitar</classname>, and that class's superclass, <classname>Object</classname>. Notice how the
object's class reference (called <tt>klass</tt> for historical reasons
that really bug Andy) points to the class object, and how the
<tt>super</tt> pointer from that class references the parent class.
<p/>
<figure type="figure">Figure not available...</figure>
<p/>
When Ruby executes <tt>Guitar.strings()</tt>, it follows the same process
as before: it goes to the receiver, class <classname>Guitar</classname>, follows the
<tt>klass</tt> reference to class <classname>Guitar$'$</classname>, and finds the method.
<p/>
Finally, note that an ``S'' has crept into the flags in class
<classname>Guitar$'$</classname>. The classes that Ruby creates automatically are
marked internally as <em>singleton classes</em>.
Singleton classes are
treated slightly differently within Ruby. The most obvious difference
from the outside is that they are effectively invisible: they will
never appear in a list of objects returned from methods such as
<cim><file>module</file><front>Module</front><back>ancestors</back><mref>ancestors</mref></cim> or <mmm><file>objectspace</file><front>ObjectSpace</front><back>each_object</back><mref>each_object</mref></mmm>.
<subsection>Object-Specific Classes</subsection>
<p/>
Ruby allows you to create a class tied to a particular object. In the
following example, we create two <classname>String</classname> objects. We then associate 
an anonymous class with one of them,
overriding one of the methods in
the object's base class and adding a new method.
<p/>
<codefragment>
<fullcode><![CDATA[  a = "hello"
  b = a.dup
  
  class <<a
    def to_s
      "The value is '#{self}'"
    end
    def twoTimes
      self + self
    end
  end
  
  a.to_s
  a.twoTimes
  b.to_s
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>a<nbsp/>=<nbsp/>"hello"</tt></td>
</tr>
<tr>
<td colspan="3"><tt>b<nbsp/>=<nbsp/>a.dup</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>class<nbsp/>&lt;&lt;a</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>to_s</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>"The<nbsp/>value<nbsp/>is<nbsp/>'#{self}'"</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>twoTimes</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>self<nbsp/>+<nbsp/>self</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
  <td><tt>a.to_s</tt></td>
  <td>&#187;</td>
  <td><tt>"The<nbsp/>value<nbsp/>is<nbsp/>'hello'"</tt></td>
</tr>
<tr>
  <td><tt>a.twoTimes</tt></td>
  <td>&#187;</td>
  <td><tt>"hellohello"</tt></td>
</tr>
<tr>
  <td><tt>b.to_s</tt></td>
  <td>&#187;</td>
  <td><tt>"hello"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
This example uses the ``<tt>class &lt;&lt;</tt><obj>obj</obj>'' notation, which
basically says ``build me a new class just for object <obj>obj</obj>.'' We
could also have written it as:
<p/>
<codefragment>
<fullcode><![CDATA[  a = "hello"
  b = a.dup
  def a.to_s
    "The value is '#{self}'"
  end
  def a.twoTimes
    self + self
  end
  
  a.to_s
  a.twoTimes
  b.to_s
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>a<nbsp/>=<nbsp/>"hello"</tt></td>
</tr>
<tr>
<td colspan="3"><tt>b<nbsp/>=<nbsp/>a.dup</tt></td>
</tr>
<tr>
<td colspan="3"><tt>def<nbsp/>a.to_s</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>"The<nbsp/>value<nbsp/>is<nbsp/>'#{self}'"</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>def<nbsp/>a.twoTimes</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>self<nbsp/>+<nbsp/>self</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
  <td><tt>a.to_s</tt></td>
  <td>&#187;</td>
  <td><tt>"The<nbsp/>value<nbsp/>is<nbsp/>'hello'"</tt></td>
</tr>
<tr>
  <td><tt>a.twoTimes</tt></td>
  <td>&#187;</td>
  <td><tt>"hellohello"</tt></td>
</tr>
<tr>
  <td><tt>b.to_s</tt></td>
  <td>&#187;</td>
  <td><tt>"hello"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
The effect is the same in both cases: a class is added to the object
``<tt>a</tt>''. This gives us a strong hint about the Ruby implementation: 
a singleton class is created and inserted as <tt>a</tt>'s direct
class. <tt>a</tt>'s original class, <classname>String</classname>, is made this singleton's
superclass. The before and after pictures are shown in Figure
19.3 on page 246.
<p/>
Ruby performs a slight optimization with these singleton classes. If
an object's <tt>klass</tt> reference already points to a singleton class,
a new one will not be created. This means that the first of the two
method definitions in the previous example will create a singleton
class, but the second will simply add a method to it.
<p/>
<figure type="figure">Figure not available...</figure>
<p/>
<subsection>Mixin Modules</subsection>
<p/>
When a class includes a module, that module's instance methods become
available as instance methods of the class. It's almost as if the
module becomes a superclass of the class that uses it. Not
surprisingly, that's about how it works. When you include a module,
Ruby creates an anonymous proxy class that references that module, and 
inserts that proxy as the direct superclass of the class that did the 
including. The proxy class contains references to the instance
variables and methods of the module. This is important: the same
module may be included in many different classes, and will appear in
many different inheritance chains. However, thanks to the proxy
class,
there is still only one underlying module: change a method definition
in that module, and it will change in all classes that include that
module, both past and future.
<p/>
<codefragment>
<fullcode><![CDATA[  module SillyModule
    def hello
      "Hello."
    end
  end
  class SillyClass
    include SillyModule
  end
  s = SillyClass.new
  s.hello
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>module<nbsp/>SillyModule</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>hello</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>"Hello."</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>class<nbsp/>SillyClass</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>include<nbsp/>SillyModule</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>s<nbsp/>=<nbsp/>SillyClass.new</tt></td>
</tr>
<tr>
  <td><tt>s.hello</tt></td>
  <td>&#187;</td>
  <td><tt>"Hello."</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
<codefragment>
<fullcode><![CDATA[!-  module SillyModule
!-    def hello
!-      "Hello."
!-    end
!-  end
!-  class SillyClass
!-    include SillyModule
!-  end
!-  s = SillyClass.new
  module SillyModule
    def hello
      "Hi, there!"
    end
  end
  s.hello
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>module<nbsp/>SillyModule</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>hello</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>"Hi,<nbsp/>there!"</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
  <td><tt>s.hello</tt></td>
  <td>&#187;</td>
  <td><tt>"Hi,<nbsp/>there!"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
The relationship between classes and the modules they include is shown 
in Figure 19.4 on page 247. If multiple modules are included, they
are added to the chain in order.
<p/>
<figure type="figure">Figure not available...</figure>
<p/>
If a module itself includes other modules, a chain of proxy classes
will be added to any class that includes that module, one proxy for
each module that is directly or indirectly included.
<subsection>Extending Objects</subsection>
<p/>
Just as you can define an anonymous class for an 
object using ``<tt>class<nbsp/>&lt;&lt;<obj>obj</obj></tt>'', you can mix a module into an
object using <cim><file>object</file><front>Object</front><back>extend</back><mref>extend</mref></cim>. For example:
<p/>
<codefragment>
<fullcode><![CDATA[  module Humor
    def tickle
      "hee, hee!"
    end
  end

  a = "Grouchy"
  a.extend Humor   #!sh!
  a.tickle
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>module<nbsp/>Humor</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>tickle</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>"hee,<nbsp/>hee!"</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>a<nbsp/>=<nbsp/>"Grouchy"</tt></td>
</tr>
<tr>
<td colspan="3"><tt>a.extend<nbsp/>Humor</tt></td>
</tr>
<tr>
  <td><tt>a.tickle</tt></td>
  <td>&#187;</td>
  <td><tt>"hee,<nbsp/>hee!"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
There is an interesting trick with <meth>extend</meth>.
If you use it
within a class definition, the module's methods become class
methods.
<p/>
<codefragment>
<fullcode><![CDATA[  module Humor
    def tickle
      "hee, hee!"
    end
  end

  class Grouchy
    include Humor
    extend  Humor
  end

  Grouchy.tickle
  a = Grouchy.new
  a.tickle
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>module<nbsp/>Humor</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>tickle</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>"hee,<nbsp/>hee!"</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>class<nbsp/>Grouchy</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>include<nbsp/>Humor</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>extend<nbsp/><nbsp/>Humor</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
  <td><tt>Grouchy.tickle</tt></td>
  <td>&#187;</td>
  <td><tt>"hee,<nbsp/>hee!"</tt></td>
</tr>
<tr>
<td colspan="3"><tt>a<nbsp/>=<nbsp/>Grouchy.new</tt></td>
</tr>
<tr>
  <td><tt>a.tickle</tt></td>
  <td>&#187;</td>
  <td><tt>"hee,<nbsp/>hee!"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
This is because calling <meth>extend</meth> is equivalent to
<tt>self.extend</tt>, so the methods are added to <tt>self</tt>, which in a
class definition is the class itself.
<section>Class and Module Definitions</section>
<p/>
Having exhausted the combinations of classes and objects, we can
(thankfully) get back to programming by looking at the nuts and bolts
of class and module definitions.
<p/>
In languages such as C++ and Java, class definitions are processed at
compile time: the compiler loads up symbol tables, works out how much
storage to allocate, constructs dispatch tables, and does all those other
obscure things we'd rather not think too hard about.
<p/>
Ruby is different. In Ruby, class and module definitions are executable
code. Although parsed at compile time, the classes and modules are
created at runtime, when the definition is encountered. (The same is
also true of method definitions.) This allows you to structure your
programs far more dynamically than in most conventional languages. 
You can make decisions once, when the class is being
defined, rather than each time that objects of the class are
used. The class in the following example decides as it is being
defined what version of a decryption routine to create.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!-  module Tracing
!-  end
!-  $DEBUGGING = true
!-  EXPORT_VERSION=true
  class MediaPlayer
    include Tracing if $DEBUGGING

    if ::EXPORT_VERSION
      def decrypt(stream)
        raise "Decryption not available"
      end
    else
      def decrypt(stream)
        # ...
      end
    end
    
  end
]]></fullcode>
class<nbsp/>MediaPlayer
<nbsp/><nbsp/>include<nbsp/>Tracing<nbsp/>if<nbsp/>$DEBUGGING
<p/>
<nbsp/><nbsp/>if<nbsp/>::EXPORT_VERSION
<nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>decrypt(stream)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>raise<nbsp/>"Decryption<nbsp/>not<nbsp/>available"
<nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/>else
<nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>decrypt(stream)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>...
<nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/>end
<p/>
end
</alltt>
</codefragment>
<p/>
If class definitions are executable code, this implies that they
execute in the context of some object: <var>self</var> must reference
<em>something</em>. Let's find out what it is.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class Test
    puts "Type of self = #{self.type}"
    puts "Name of self = #{self.name}"
  end
]]></fullcode>
class<nbsp/>Test
<nbsp/><nbsp/>puts<nbsp/>"Type<nbsp/>of<nbsp/>self<nbsp/>=<nbsp/>#{self.type}"
<nbsp/><nbsp/>puts<nbsp/>"Name<nbsp/>of<nbsp/>self<nbsp/>=<nbsp/>#{self.name}"
end
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
Type<nbsp/>of<nbsp/>self<nbsp/>=<nbsp/>Class
Name<nbsp/>of<nbsp/>self<nbsp/>=<nbsp/>Test
</alltt>
</codefragment>
<p/>
This means that a class definition is executed with that class as the
current object. Referring back to the section about metaclasses
on page 242, we can see that this means that methods in
the metaclass and its superclasses will be available during the
execution of the method definition. We can check this out.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class Test
    def Test.sayHello
      puts "Hello from #{name}"
    end

    sayHello
  end
]]></fullcode>
class<nbsp/>Test
<nbsp/><nbsp/>def<nbsp/>Test.sayHello
<nbsp/><nbsp/><nbsp/><nbsp/>puts<nbsp/>"Hello<nbsp/>from<nbsp/>#{name}"
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>sayHello
end
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
Hello<nbsp/>from<nbsp/>Test
</alltt>
</codefragment>
<p/>
In this example we define a class method, <ccm><front>Test</front><back>sayHello</back></ccm>, and
then call it in the body of the class definition. Within
<tt>sayHello</tt>, we call <meth>name</meth>, an instance method of class
<classname>Module</classname>. Because <classname>Module</classname> is an ancestor of <classname>Class</classname>, its instance
methods can be called without an explicit receiver within a class definition.
<p/>
In fact, many of the directives that you use when defining a class
or module, things such as <meth>alias_method</meth>, <meth>attr</meth>, and
<meth>public</meth>, are simply methods in class <classname>Module</classname>. This opens up 
some interesting possibilities---you can extend the functionality of
class and module definitions by writing Ruby code. Let's look at a
couple of examples.
<p/>
As a first example, let's look at adding a basic documentation
facility to modules and classes.
This would allow us to associate a
string with modules and classes that we write, a string that is
accessible as the program is running. We'll choose a simple syntax.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class Example
    doc "This is a sample documentation string"
    # .. rest of class
  end
]]></fullcode>
class<nbsp/>Example
<nbsp/><nbsp/>doc<nbsp/>"This<nbsp/>is<nbsp/>a<nbsp/>sample<nbsp/>documentation<nbsp/>string"
<nbsp/><nbsp/>#<nbsp/>..<nbsp/>rest<nbsp/>of<nbsp/>class
end
</alltt>
</codefragment>
<p/>
We need to make <meth>doc</meth> available to any module or class, so we
need to make it an instance method of class <classname>Module</classname>.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class Module
    @@docs = Hash.new(nil)
    def doc(str)
      @@docs[self.name] = str
    end
    
    def Module::doc(aClass)
      # If we're passed a class or module, convert to string
      # ('<=' for classes checks for same class or subtype)
      aClass = aClass.name if aClass.type <= Module
      @@docs[aClass] || "No documentation for #{aClass}"
    end
  end

  class Example
    doc "This is a sample documentation string"
    # .. rest of class
  end

  module Another
    doc <<-edoc
      And this is a documentation string
      in a module
    edoc
    # rest of module
  end

  puts Module::doc(Example)
  puts Module::doc("Another")
]]></fullcode>
class<nbsp/>Module
<nbsp/><nbsp/>@@docs<nbsp/>=<nbsp/>Hash.new(nil)
<nbsp/><nbsp/>def<nbsp/>doc(str)
<nbsp/><nbsp/><nbsp/><nbsp/>@@docs[self.name]<nbsp/>=<nbsp/>str
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>Module::doc(aClass)
<nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>If<nbsp/>we're<nbsp/>passed<nbsp/>a<nbsp/>class<nbsp/>or<nbsp/>module,<nbsp/>convert<nbsp/>to<nbsp/>string
<nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>('&lt;='<nbsp/>for<nbsp/>classes<nbsp/>checks<nbsp/>for<nbsp/>same<nbsp/>class<nbsp/>or<nbsp/>subtype)
<nbsp/><nbsp/><nbsp/><nbsp/>aClass<nbsp/>=<nbsp/>aClass.name<nbsp/>if<nbsp/>aClass.type<nbsp/>&lt;=<nbsp/>Module
<nbsp/><nbsp/><nbsp/><nbsp/>@@docs[aClass]<nbsp/>||<nbsp/>"No<nbsp/>documentation<nbsp/>for<nbsp/>#{aClass}"
<nbsp/><nbsp/>end
end
<p/>
class<nbsp/>Example
<nbsp/><nbsp/>doc<nbsp/>"This<nbsp/>is<nbsp/>a<nbsp/>sample<nbsp/>documentation<nbsp/>string"
<nbsp/><nbsp/>#<nbsp/>..<nbsp/>rest<nbsp/>of<nbsp/>class
end
<p/>
module<nbsp/>Another
<nbsp/><nbsp/>doc<nbsp/>&lt;&lt;-edoc
<nbsp/><nbsp/><nbsp/><nbsp/>And<nbsp/>this<nbsp/>is<nbsp/>a<nbsp/>documentation<nbsp/>string
<nbsp/><nbsp/><nbsp/><nbsp/>in<nbsp/>a<nbsp/>module
<nbsp/><nbsp/>edoc
<nbsp/><nbsp/>#<nbsp/>rest<nbsp/>of<nbsp/>module
end
<p/>
puts<nbsp/>Module::doc(Example)
puts<nbsp/>Module::doc("Another")
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
This<nbsp/>is<nbsp/>a<nbsp/>sample<nbsp/>documentation<nbsp/>string
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>And<nbsp/>this<nbsp/>is<nbsp/>a<nbsp/>documentation<nbsp/>string
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>in<nbsp/>a<nbsp/>module
</alltt>
</codefragment>
<p/>
The second example is a performance enhancement based on Tadayoshi Funaba's
<tt>date</tt> module
(described beginning on page 443). Say we
have a class that represents some underlying quantity (in this case, a
date).  The class may have many attributes that present the same
underlying date in different ways: as a Julian day number, as a
string, as a [year, month, day] triple, and so on. Each value
represents the same date and may involve a fairly complex calculation
to derive. We therefore would like to calculate each attribute only
once, when it is first accessed.
<p/>
The manual way would be to add a test to each accessor:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class ExampleDate
    def initialize(dayNumber)
      @dayNumber = dayNumber
    end
    
    def asDayNumber
      @dayNumber
    end
    
    def asString
      unless @string
        # complex calculation
        @string = result
      end
      @string
    end
    
    def asYMD
      unless @ymd
        # another calculation
        @ymd = [ y, m, d ]
      end
      @ymd
    end
    # ...
  end
]]></fullcode>
class<nbsp/>ExampleDate
<nbsp/><nbsp/>def<nbsp/>initialize(dayNumber)
<nbsp/><nbsp/><nbsp/><nbsp/>@dayNumber<nbsp/>=<nbsp/>dayNumber
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>asDayNumber
<nbsp/><nbsp/><nbsp/><nbsp/>@dayNumber
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>asString
<nbsp/><nbsp/><nbsp/><nbsp/>unless<nbsp/>@string
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>complex<nbsp/>calculation
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>@string<nbsp/>=<nbsp/>result
<nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/><nbsp/><nbsp/>@string
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>asYMD
<nbsp/><nbsp/><nbsp/><nbsp/>unless<nbsp/>@ymd
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>another<nbsp/>calculation
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>@ymd<nbsp/>=<nbsp/>[<nbsp/>y,<nbsp/>m,<nbsp/>d<nbsp/>]
<nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/><nbsp/><nbsp/>@ymd
<nbsp/><nbsp/>end
<nbsp/><nbsp/>#<nbsp/>...
end
</alltt>
</codefragment>
<p/>
This is a clunky technique---let's see if we can come up with
something sexier.
<p/>
What we're aiming for is a directive that indicates that the body of a
particular method should be invoked only once. The value returned by
that first call should be cached. Thereafter, calling that same method
should return the cached value without reevaluating the method body
again. This is similar to Eiffel's <tt>once</tt> modifier for routines.
We'd like to be able to write something like:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  class ExampleDate
!-  def ExampleDate.once(*a)
!-  end
    def asDayNumber
      @dayNumber
    end
    
    def asString
      # complex calculation
    end
    
    def asYMD
      # another calculation
      [ y, m, d ]
    end

    once :asString, :asYMD
  end
]]></fullcode>
class<nbsp/>ExampleDate
<nbsp/><nbsp/>def<nbsp/>asDayNumber
<nbsp/><nbsp/><nbsp/><nbsp/>@dayNumber
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>asString
<nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>complex<nbsp/>calculation
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>asYMD
<nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>another<nbsp/>calculation
<nbsp/><nbsp/><nbsp/><nbsp/>[<nbsp/>y,<nbsp/>m,<nbsp/>d<nbsp/>]
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>once<nbsp/>:asString,<nbsp/>:asYMD
end
</alltt>
</codefragment>
<p/>
We can use <tt>once</tt> as a directive by writing it as a class method of
<classname>ExampleDate</classname>,
but what should it look like internally?  The trick
is to have it rewrite the methods whose names it is passed. For each
method, it creates an alias for the original code, then creates a new
method with the same name. This new method does two things. First, it
invokes the original method (using the alias) and stores the resulting
value in an instance variable. Second, it redefines itself, so that on 
subsequent calls it simply returns the value of the instance variable
directly. Here's  Tadayoshi Funaba's code, slightly reformatted.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!-class ExampleDate
  def ExampleDate.once(*ids)
    for id in ids
      module_eval <<-"end_eval"
        alias_method :__#{id.to_i}__, #{id.inspect}
        def #{id.id2name}(*args, &block)
          def self.#{id.id2name}(*args, &block)
            @__#{id.to_i}__
          end
          @__#{id.to_i}__ = __#{id.to_i}__(*args, &block)
        end
      end_eval
    end
  end
!-end
]]></fullcode>
def<nbsp/>ExampleDate.once(*ids)
<nbsp/><nbsp/>for<nbsp/>id<nbsp/>in<nbsp/>ids
<nbsp/><nbsp/><nbsp/><nbsp/>module_eval<nbsp/>&lt;&lt;-"end_eval"
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>alias_method<nbsp/>:__#{id.to_i}__,<nbsp/>#{id.inspect}
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>#{id.id2name}(*args,<nbsp/>&amp;block)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>self.#{id.id2name}(*args,<nbsp/>&amp;block)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>@__#{id.to_i}__
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>@__#{id.to_i}__<nbsp/>=<nbsp/>__#{id.to_i}__(*args,<nbsp/>&amp;block)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/><nbsp/><nbsp/>end_eval
<nbsp/><nbsp/>end
end
</alltt>
</codefragment>
<p/>
This code uses <tt>module_eval</tt> to execute a block of code in the context of
the calling module (or, in this case, the calling class). The original
method is renamed <em>__nnn__</em>, where the <em>nnn</em> part is
the integer representation of the method name's symbol id. The code
uses the same name for the caching instance variable. The bulk
of the code is a method that dynamically redefines itself. Note that
this redefinition uses the fact that methods may contain nested
singleton method definitions, a clever trick.
<p/>
Understand this code, and you'll be well on the way to true Ruby mastery.
<p/>
However, we can take it further. Look in the <meth>date</meth> module, and you'll
see method <tt>once</tt> written slightly differently.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[class Date
  class << self
    def once(*ids)
      # ...
    end
  end
  # ...
end
]]></fullcode>
class<nbsp/>Date
<nbsp/><nbsp/>class<nbsp/>&lt;&lt;<nbsp/>self
<nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>once(*ids)
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>#<nbsp/>...
<nbsp/><nbsp/><nbsp/><nbsp/>end
<nbsp/><nbsp/>end
<nbsp/><nbsp/>#<nbsp/>...
end
</alltt>
</codefragment>
<p/>
The interesting thing here is the inner class definition,
``<tt>class<nbsp/>&lt;&lt;<nbsp/>self</tt>''. This defines a class based on the object
<const>self</const>, and <const>self</const> happens to be the class object for
<classname>Date</classname>. The result? Every method within the inner class definition
is automatically a class method of <classname>Date</classname>.
<p/>
The <meth>once</meth> feature is generally
applicable---it should work for any class. If you took <meth>once</meth>
and made it a private instance method of class <classname>Module</classname>, it would be
available for use in any Ruby class.
<subsection>Class Names Are Constants</subsection>
<p/>
We've said that when you invoke a class method, all you're doing is
sending a message to the <classname>Class</classname> object itself. When you say
something such as <tt>String.new("gumby")</tt>, you're sending the message 
<meth>new</meth> to the object that is class <classname>String</classname>. But how does Ruby 
know to do this? After all, the receiver of a message should be an
object reference, which implies that there must be a 
constant called ``String'' somewhere containing a reference to the
<classname>String</classname> object.<footnote>It will be a constant, not a variable,
  because ``String'' starts with an uppercase letter.</footnote>
And in fact, that's exactly what happens. All the built-in classes,
along with the classes you define, have a corresponding global
constant with the same name as the class.
This is both straightforward and subtle. The subtlety comes from the
fact that there are actually two things named (for example) <classname>String</classname> in the
system. There's a <em>constant</em> that references an object of class
<classname>String</classname>, and there's the object itself.
<p/>
The fact that class names are just constants means that you can treat
classes just like any other Ruby object: you can copy them, pass them
to methods, and use them in expressions.
<p/>
<codefragment>
<fullcode><![CDATA[  def factory(klass, *args)
    klass.new(*args)
  end

  factory(String, "Hello")
  factory(Dir,    ".")

  flag = true
  (flag ? Array : Hash)[1, 2, 3, 4]
  flag = false
  (flag ? Array : Hash)[1, 2, 3, 4]
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>def<nbsp/>factory(klass,<nbsp/>*args)</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>klass.new(*args)</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
  <td><tt>factory(String,<nbsp/>"Hello")</tt></td>
  <td>&#187;</td>
  <td><tt>"Hello"</tt></td>
</tr>
<tr>
  <td><tt>factory(Dir,<nbsp/><nbsp/><nbsp/><nbsp/>".")</tt></td>
  <td>&#187;</td>
  <td><tt>#&lt;Dir:0x4018d1a8&gt;</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>flag<nbsp/>=<nbsp/>true</tt></td>
</tr>
<tr>
  <td><tt>(flag<nbsp/>?<nbsp/>Array<nbsp/>:<nbsp/>Hash)[1,<nbsp/>2,<nbsp/>3,<nbsp/>4]</tt></td>
  <td>&#187;</td>
  <td><tt>[1,<nbsp/>2,<nbsp/>3,<nbsp/>4]</tt></td>
</tr>
<tr>
<td colspan="3"><tt>flag<nbsp/>=<nbsp/>false</tt></td>
</tr>
<tr>
  <td><tt>(flag<nbsp/>?<nbsp/>Array<nbsp/>:<nbsp/>Hash)[1,<nbsp/>2,<nbsp/>3,<nbsp/>4]</tt></td>
  <td>&#187;</td>
  <td><tt>{1=&gt;2,<nbsp/>3=&gt;4}</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<section>Top-Level Execution Environment</section>
<p/>
Many times in this book we've claimed that everything in Ruby is an
object. However, there's one thing that we've used time and time again 
that appears to contradict this---the top-level Ruby execution environment.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[  puts "Hello, World"
]]></fullcode>
puts<nbsp/>"Hello,<nbsp/>World"
</alltt>
</codefragment>
<p/>
Not an object in sight. We may as well be writing some variant of
Fortran or QW-Basic.  But dig deeper, and you'll come across objects
and classes lurking in even the simplest code.
<p/>
We know that the literal <tt>"Hello, World"</tt> generates a Ruby
<classname>String</classname>, so there's one object. We also know that the bare method
call to <meth>puts</meth> is effectively the same as <tt>self.puts</tt>. But
what is ``self''?
<p/>
<codefragment>
<fullcode><![CDATA[  self.type
]]></fullcode><rubycode>
<tr>
  <td><tt>self.type</tt></td>
  <td>&#187;</td>
  <td><tt>Object</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
At the top level, we're executing code in the context of some
predefined object. When we define methods, we're actually creating
(private) singleton methods for this object. Instance variables belong
to this object. And because we're in the context of <classname>Object</classname>, we can 
use all of <classname>Object</classname>'s methods (including those mixed-in from <modulename>Kernel</modulename>) 
in function form. This explains why we can call <modulename>Kernel</modulename> methods
such as <meth>puts</meth> at the top level (and indeed throughout Ruby):
these methods are part of every object.
<section>Inheritance and Visibility</section>
<p/>
There's one last wrinkle to class inheritance, and it's fairly
obscure.
<p/>
Within a class definition, you can change the visibility of a method
in an ancestor class. For example, you can do something like:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[class Base
  def aMethod
    puts "Got here"
  end
  private :aMethod
end

class Derived1 < Base
  public :aMethod
end

class Derived2 < Base
end
]]></fullcode>
class<nbsp/>Base
<nbsp/><nbsp/>def<nbsp/>aMethod
<nbsp/><nbsp/><nbsp/><nbsp/>puts<nbsp/>"Got<nbsp/>here"
<nbsp/><nbsp/>end
<nbsp/><nbsp/>private<nbsp/>:aMethod
end
<p/>
class<nbsp/>Derived1<nbsp/>&lt;<nbsp/>Base
<nbsp/><nbsp/>public<nbsp/>:aMethod
end
<p/>
class<nbsp/>Derived2<nbsp/>&lt;<nbsp/>Base
end
</alltt>
</codefragment>
<p/>
In this example, you would be able to invoke <meth>aMethod</meth> in
instances of class <classname>Derived1</classname>, but not via instances of <classname>Base</classname> or
<classname>Derived2</classname>.
<p/>
So how does Ruby pull off this feat of having one method 
with two different visibilities? Simply put, it cheats.
<p/>
If a subclass changes the visibility of a method in a parent, Ruby
effectively inserts a hidden proxy method in the subclass that invokes 
the original method using <kw>super</kw>. It then sets the visibility
of that proxy to whatever you requested. This means that the code:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!-class Base
!-  def aMethod
!-    puts "Got here"
!-  end
!-  private :aMethod
!-end
class Derived1 < Base
  public :aMethod
end
]]></fullcode>
class<nbsp/>Derived1<nbsp/>&lt;<nbsp/>Base
<nbsp/><nbsp/>public<nbsp/>:aMethod
end
</alltt>
</codefragment>
<p/>
is effectively the same as:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!-class Base
!-  def aMethod
!-    puts "Got here"
!-  end
!-  private :aMethod
!-end
class Derived1 < Base
  def aMethod(*args)
    super
  end
  public :aMethod
end
]]></fullcode>
class<nbsp/>Derived1<nbsp/>&lt;<nbsp/>Base
<nbsp/><nbsp/>def<nbsp/>aMethod(*args)
<nbsp/><nbsp/><nbsp/><nbsp/>super
<nbsp/><nbsp/>end
<nbsp/><nbsp/>public<nbsp/>:aMethod
end
</alltt>
</codefragment>
<p/>
The call to <kw>super</kw> can access the parent's method regardless of
its visibility, so the rewrite allows the subclass to override its
parent's visibility rules. Pretty scary, eh?
<section>Freezing Objects</section>
<p/>
There are times when you've worked hard to make your object exactly
right, and you'll be damned if you'll let anyone just change
it. Perhaps you need to pass some kind of opaque object between two of 
your classes via some third-party object, and you want to make sure it 
arrives unmodified. Perhaps you want to use an object as a hash key, and
need to make sure that no one modifies it while it's being used.
Perhaps something is corrupting one of your objects, and you'd like
Ruby to raise an exception as soon as the change occurs. 
<p/>
Ruby provides a very simple mechanism to help with this. Any object can be
<em>frozen</em> by invoking <cim><file>object</file><front>Object</front><back>freeze</back><mref>freeze</mref></cim>. A frozen object may
not be modified: you can't change its instance variables (directly or
indirectly), you can't associate singleton methods with it, and, if it 
is a class or module, you can't add, delete, or modify its
methods. Once frozen, an object stays frozen: there is no
<cim><file>object</file><front>Object</front><back>thaw</back><mref>thaw</mref></cim>. You can test to see if an object is frozen using
<cim><file>object</file><front>Object</front><back>frozen?</back><mref>frozen_qm</mref></cim>.
<p/>
What happens when you copy a frozen object? That depends on the method 
you use. If you call an object's <meth>clone</meth> method, the entire
object state (including whether it is frozen) is copied to the new
object. On the other hand, <meth>dup</meth> typically copies only the
object's contents---the new copy will not inherit the frozen status.
<p/>
<codefragment>
<fullcode><![CDATA[  str1 = "hello"
  str1.freeze
  str1.frozen?
  str2 = str1.clone
  str2.frozen?
  str3 = str1.dup
  str3.frozen?
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>str1<nbsp/>=<nbsp/>"hello"</tt></td>
</tr>
<tr>
  <td><tt>str1.freeze</tt></td>
  <td>&#187;</td>
  <td><tt>"hello"</tt></td>
</tr>
<tr>
  <td><tt>str1.frozen?</tt></td>
  <td>&#187;</td>
  <td><tt>true</tt></td>
</tr>
<tr>
<td colspan="3"><tt>str2<nbsp/>=<nbsp/>str1.clone</tt></td>
</tr>
<tr>
  <td><tt>str2.frozen?</tt></td>
  <td>&#187;</td>
  <td><tt>true</tt></td>
</tr>
<tr>
<td colspan="3"><tt>str3<nbsp/>=<nbsp/>str1.dup</tt></td>
</tr>
<tr>
  <td><tt>str3.frozen?</tt></td>
  <td>&#187;</td>
  <td><tt>false</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
Although freezing objects may initially seem like a good idea, you
might want to hold off doing it until you come across a real
need. Freezing is one of those ideas that looks essential on paper but 
isn't used much in practice.
</chapter>
</ppdoc>