1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
<ppdoc>
<copyright>
Copyright (c) 2001 by Addison Wesley Longman. This
material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or
later (the latest version is presently available at
http://www.opencontent.org/openpub/).
</copyright>
<chapter name="Reflection, ObjectSpace, and Distributed Ruby">
<p/>
One of the many advantages of dynamic languages such as Ruby is the
ability to <em>introspect</em>---to examine aspects of the program from
within the program itself. Java, for one, calls this
feature <em>reflection</em>.
<p/>
The word ``reflection''
conjures up an image of looking at oneself in the mirror---perhaps
investigating the relentless spread of that bald spot on the top of
one's head. That's a pretty apt analogy: we use reflection to examine
parts of our programs that aren't normally visible from where we stand.
<p/>
In this deeply introspective mood, while we are contemplating our
navels and burning incense (being careful not to swap the two tasks),
what can we learn about our program? We might discover:
<p/>
<ul>
<li> what objects it contains,
</li><li> the current class hierarchy,
</li><li> the contents and behaviors of objects, and
</li><li> information on methods.
</li></ul>
<p/>
Armed with this information, we can look at particular objects
and decide which of their methods to call at runtime---even if the class of
the object didn't exist when we first wrote the code. We can also
start doing clever things, perhaps modifying the program as it's
running.
<p/>
Sound scary? It needn't be. In fact, these reflection capabilities let
us do some very useful things. Later in this chapter we'll look at
distributed Ruby and marshaling, two reflection-based technologies
that let us send objects around the world and through time.
<section>Looking at Objects</section>
<p/>
Have you ever craved the ability to traverse <em>all</em> the living objects
in your program? We have! Ruby lets you perform
this trick with <mmm><file>objectspace</file><front>ObjectSpace</front><back>each_object</back><mref>each_object</mref></mmm>. We can use it to
do all sorts of neat tricks.
<p/>
For example, to iterate over all objects of type <classname>Numeric</classname>, you'd
write the following.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ a = 102.7
b = 95.1
ObjectSpace.each_object(Numeric) {|x| p x }
]]></fullcode>
a<nbsp/>=<nbsp/>102.7
b<nbsp/>=<nbsp/>95.1
ObjectSpace.each_object(Numeric)<nbsp/>{|x|<nbsp/>p<nbsp/>x<nbsp/>}
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
95.1
102.7
2.718281828
3.141592654
</alltt>
</codefragment>
<p/>
Hey, where did those last two numbers come from? We didn't define
them in our program. If you look on page 433, you'll
see that the <modulename>Math</modulename> module defines constants for e and PI; since we are
examining <em>all</em> living objects in the system, these turn up as
well.
<p/>
However, there is a catch. Let's try the same example with different
numbers.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ a = 102
b = 95
ObjectSpace.each_object(Numeric) {|x| p x }
]]></fullcode>
a<nbsp/>=<nbsp/>102
b<nbsp/>=<nbsp/>95
ObjectSpace.each_object(Numeric)<nbsp/>{|x|<nbsp/>p<nbsp/>x<nbsp/>}
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
2.718281828
3.141592654
</alltt>
</codefragment>
<p/>
Neither of the <classname>Fixnum</classname> objects we created showed up. That's because
<modulename>ObjectSpace</modulename> doesn't know about objects with immediate values:
<classname>Fixnum</classname>, <const>true</const>, <const>false</const>, and <tt>nil</tt>.
<subsection>Looking Inside Objects</subsection>
<p/>
Once you've found an interesting object, you may be tempted to find
out just what it can do. Unlike static languages, where a variable's
type determines its class, and hence the methods it supports, Ruby
supports liberated objects. You really cannot tell exactly what an
object can do until you look under its hood.<footnote>Or under its bonnet, for
objects created to the east of the Atlantic.</footnote>
<p/>
For instance, we can get a list of all the methods to which an object will
respond.
<p/>
<codefragment>
<fullcode><![CDATA[ r = 1..10 # Create a Range object
list = r.methods
list.length
list[0..3]
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>r<nbsp/>=<nbsp/>1..10<nbsp/>#<nbsp/>Create<nbsp/>a<nbsp/>Range<nbsp/>object</tt></td>
</tr>
<tr>
<td colspan="3"><tt>list<nbsp/>=<nbsp/>r.methods</tt></td>
</tr>
<tr>
<td><tt>list.length</tt></td>
<td>»</td>
<td><tt>60</tt></td>
</tr>
<tr>
<td><tt>list[0..3]</tt></td>
<td>»</td>
<td><tt>["size",<nbsp/>"length",<nbsp/>"exclude_end?",<nbsp/>"inspect"]</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
Or, we can check to see if an object supports a particular method.
<p/>
<codefragment>
<fullcode><![CDATA[!- r = 1..10 # Create a Range object
r.respond_to?("frozen?")
r.respond_to?("hasKey")
"me".respond_to?("==")
]]></fullcode><rubycode>
<tr>
<td><tt>r.respond_to?("frozen?")</tt></td>
<td>»</td>
<td><tt>true</tt></td>
</tr>
<tr>
<td><tt>r.respond_to?("hasKey")</tt></td>
<td>»</td>
<td><tt>false</tt></td>
</tr>
<tr>
<td><tt>"me".respond_to?("==")</tt></td>
<td>»</td>
<td><tt>true</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
We can determine our object's class and its unique object id, and test
its relationship to other classes.
<p/>
<codefragment>
<fullcode><![CDATA[ num = 1
num.id
num.class
num.kind_of? Fixnum
num.kind_of? Numeric
num.instance_of? Fixnum
num.instance_of? Numeric
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>num<nbsp/>=<nbsp/>1</tt></td>
</tr>
<tr>
<td><tt>num.id</tt></td>
<td>»</td>
<td><tt>3</tt></td>
</tr>
<tr>
<td><tt>num.class</tt></td>
<td>»</td>
<td><tt>Fixnum</tt></td>
</tr>
<tr>
<td><tt>num.kind_of?<nbsp/>Fixnum</tt></td>
<td>»</td>
<td><tt>true</tt></td>
</tr>
<tr>
<td><tt>num.kind_of?<nbsp/>Numeric</tt></td>
<td>»</td>
<td><tt>true</tt></td>
</tr>
<tr>
<td><tt>num.instance_of?<nbsp/>Fixnum</tt></td>
<td>»</td>
<td><tt>true</tt></td>
</tr>
<tr>
<td><tt>num.instance_of?<nbsp/>Numeric</tt></td>
<td>»</td>
<td><tt>false</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<section>Looking at Classes</section>
<p/>
Knowing about objects is one part of reflection, but to get the whole
picture, you also need to be able to look at classes---the methods
and constants that they contain.
<p/>
Looking at the class hierarchy is easy. You can get the parent of any
particular class using <cim><file>class</file><front>Class</front><back>superclass</back><mref>superclass</mref></cim>. For
classes <em>and</em> modules, <cim><file>module</file><front>Module</front><back>ancestors</back><mref>ancestors</mref></cim> lists both
superclasses and mixed-in modules.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ klass = Fixnum
begin
print klass
klass = klass.superclass
print " < " if klass
end while klass
puts
p Fixnum.ancestors
]]></fullcode>
klass<nbsp/>=<nbsp/>Fixnum
begin
<nbsp/><nbsp/>print<nbsp/>klass
<nbsp/><nbsp/>klass<nbsp/>=<nbsp/>klass.superclass
<nbsp/><nbsp/>print<nbsp/>"<nbsp/><<nbsp/>"<nbsp/>if<nbsp/>klass
end<nbsp/>while<nbsp/>klass
puts
p<nbsp/>Fixnum.ancestors
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
Fixnum<nbsp/><<nbsp/>Integer<nbsp/><<nbsp/>Numeric<nbsp/><<nbsp/>Object
[Fixnum,<nbsp/>Integer,<nbsp/>Precision,<nbsp/>Numeric,<nbsp/>Comparable,<nbsp/>Object,<nbsp/>Kernel]
</alltt>
</codefragment>
<p/>
If you want to build a complete class hierarchy, just run that code
for every class in the system. We can use <modulename>ObjectSpace</modulename> to iterate
over all <classname>Class</classname> objects:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ ObjectSpace.each_object(Class) do |aClass|
# ...
end
]]></fullcode>
ObjectSpace.each_object(Class)<nbsp/>do<nbsp/>|aClass|
<nbsp/><nbsp/><nbsp/>#<nbsp/>...
end
</alltt>
</codefragment>
<subsection>Looking Inside Classes</subsection>
<p/>
We can find out a bit more about the methods and constants in a
particular object. Instead of just checking to see whether the object
responds to a given message, we can ask for methods by access level,
we can ask for just singleton methods, and we can have a look at
the object's constants.
<p/>
<codefragment>
<fullcode><![CDATA[ class Demo
private
def privMethod
end
protected
def protMethod
end
public
def pubMethod
end
def Demo.classMethod
end
CONST = 1.23
end
Demo.private_instance_methods
Demo.protected_instance_methods
Demo.public_instance_methods
Demo.singleton_methods
Demo.constants - Demo.superclass.constants
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>class<nbsp/>Demo</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>private</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>privMethod</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>protected</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>protMethod</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>public</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>def<nbsp/>pubMethod</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>def<nbsp/>Demo.classMethod</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>CONST<nbsp/>=<nbsp/>1.23</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>Demo.private_instance_methods</tt></td>
<td>»</td>
<td><tt>["privMethod"]</tt></td>
</tr>
<tr>
<td><tt>Demo.protected_instance_methods</tt></td>
<td>»</td>
<td><tt>["protMethod"]</tt></td>
</tr>
<tr>
<td><tt>Demo.public_instance_methods</tt></td>
<td>»</td>
<td><tt>["pubMethod"]</tt></td>
</tr>
<tr>
<td><tt>Demo.singleton_methods</tt></td>
<td>»</td>
<td><tt>["classMethod"]</tt></td>
</tr>
<tr>
<td><tt>Demo.constants<nbsp/>-<nbsp/>Demo.superclass.constants</tt></td>
<td>»</td>
<td><tt>["CONST"]</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
<ccm><file>module</file><front>Module</front><back>constants</back><mref>constants</mref></ccm> returns
<em>all</em> the constants available via a module, including
constants from the module's superclasses. We're not interested in
those just at the moment, so we'll subtract them from our list.
<p/>
Given a list of method names, we might now be tempted to try calling them.
Fortunately, that's easy with Ruby.
<section>Calling Methods Dynamically</section>
<p/>
C and Java programmers often find themselves writing some kind of
dispatch table: functions which are invoked based on a command. Think
of a typical C idiom where you have to translate a string to a
function pointer:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ typedef struct {
char *name;
void (*fptr)();
} Tuple;
Tuple list[]= {
{ "play", fptr_play },
{ "stop", fptr_stop },
{ "record", fptr_record },
{ 0, 0 },
};
...
void dispatch(char *cmd) {
int i = 0;
for (; list[i].name; i++) {
if (strncmp(list[i].name,cmd,strlen(cmd)) == 0) {
list[i].fptr();
return;
}
}
/* not found */
}
]]></fullcode>
typedef<nbsp/>struct<nbsp/>{
<nbsp/><nbsp/>char<nbsp/>*name;
<nbsp/><nbsp/>void<nbsp/>(*fptr)();
}<nbsp/>Tuple;
<p/>
Tuple<nbsp/>list[]=<nbsp/>{
<nbsp/><nbsp/>{<nbsp/>"play",<nbsp/><nbsp/><nbsp/>fptr_play<nbsp/>},
<nbsp/><nbsp/>{<nbsp/>"stop",<nbsp/><nbsp/><nbsp/>fptr_stop<nbsp/>},
<nbsp/><nbsp/>{<nbsp/>"record",<nbsp/>fptr_record<nbsp/>},
<nbsp/><nbsp/>{<nbsp/>0,<nbsp/>0<nbsp/>},
};
<p/>
...
<p/>
void<nbsp/>dispatch(char<nbsp/>*cmd)<nbsp/>{
<nbsp/><nbsp/>int<nbsp/>i<nbsp/>=<nbsp/>0;
<nbsp/><nbsp/>for<nbsp/>(;<nbsp/>list[i].name;<nbsp/>i++)<nbsp/>{
<nbsp/><nbsp/><nbsp/><nbsp/>if<nbsp/>(strncmp(list[i].name,cmd,strlen(cmd))<nbsp/>==<nbsp/>0)<nbsp/>{
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>list[i].fptr();
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>return;
<nbsp/><nbsp/><nbsp/><nbsp/>}
<nbsp/><nbsp/>}
<nbsp/><nbsp/>/*<nbsp/>not<nbsp/>found<nbsp/>*/
}
</alltt>
</codefragment>
<p/>
In Ruby, you can do all this in one line. Stick all your command
functions into a class, create an instance of that class (we called it
<meth>commands</meth>), and ask that object to execute a method called the
same name as the command string.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ commands.send(commandString)
]]></fullcode>
commands.send(commandString)
</alltt>
</codefragment>
<p/>
Oh, and by the way, it does much more than the C version---it's
dynamic. The Ruby version will find new methods added at runtime just
as easily.
<p/>
You don't have to write special command classes for <meth>send</meth>: it
works on any object.
<p/>
<codefragment>
<fullcode><![CDATA[ "John Coltrane".send(:length)
"Miles Davis".send("sub", /iles/, '.')
]]></fullcode><rubycode>
<tr>
<td><tt>"John<nbsp/>Coltrane".send(:length)</tt></td>
<td>»</td>
<td><tt>13</tt></td>
</tr>
<tr>
<td><tt>"Miles<nbsp/>Davis".send("sub",<nbsp/>/iles/,<nbsp/>'.')</tt></td>
<td>»</td>
<td><tt>"M.<nbsp/>Davis"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
Another way of invoking methods dynamically uses <classname>Method</classname> objects. A
<classname>Method</classname> object is like a <classname>Proc</classname> object: it represents a chunk of
code and a context in which it executes. In this case, the code is the
body of the method, and the context is the object that created the
method. Once we have our <classname>Method</classname> object, we can execute it sometime
later by sending it the message <meth>call</meth>.
<p/>
<codefragment>
<fullcode><![CDATA[ trane = "John Coltrane".method(:length)
miles = "Miles Davis".method("sub")
trane.call
miles.call(/iles/, '.')
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>trane<nbsp/>=<nbsp/>"John<nbsp/>Coltrane".method(:length)</tt></td>
</tr>
<tr>
<td colspan="3"><tt>miles<nbsp/>=<nbsp/>"Miles<nbsp/>Davis".method("sub")</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>trane.call</tt></td>
<td>»</td>
<td><tt>13</tt></td>
</tr>
<tr>
<td><tt>miles.call(/iles/,<nbsp/>'.')</tt></td>
<td>»</td>
<td><tt>"M.<nbsp/>Davis"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
You can pass the <classname>Method</classname> object around as you would any other
object, and when you invoke <cim><file>method</file><front>Method</front><back>call</back><mref>call</mref></cim>, the method is run just
as if you had invoked it on the original object. It's like having a
C-style function pointer but in a fully object-oriented style.
<p/>
You can also use <classname>Method</classname> objects with iterators.
<p/>
<codefragment>
<fullcode><![CDATA[ def double(a)
2*a
end
mObj = method(:double)
[ 1, 3, 5, 7 ].collect(&mObj)
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>def<nbsp/>double(a)</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>2*a</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>mObj<nbsp/>=<nbsp/>method(:double)</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>[<nbsp/>1,<nbsp/>3,<nbsp/>5,<nbsp/>7<nbsp/>].collect(&mObj)</tt></td>
<td>»</td>
<td><tt>[2,<nbsp/>6,<nbsp/>10,<nbsp/>14]</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
As good things come in threes, here's yet another way to invoke
methods dynamically. The <tt>eval</tt>
method (and its variations such as
<tt>class_eval</tt>, <tt>module_eval</tt>, and <tt>instance_eval</tt>) will
parse and execute an arbitrary string of legal Ruby source code.
<p/>
<codefragment>
<fullcode><![CDATA[ trane = %q{"John Coltrane".length}
miles = %q{"Miles Davis".sub(/iles/, '.')}
eval trane
eval miles
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>trane<nbsp/>=<nbsp/>%q{"John<nbsp/>Coltrane".length}</tt></td>
</tr>
<tr>
<td colspan="3"><tt>miles<nbsp/>=<nbsp/>%q{"Miles<nbsp/>Davis".sub(/iles/,<nbsp/>'.')}</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>eval<nbsp/>trane</tt></td>
<td>»</td>
<td><tt>13</tt></td>
</tr>
<tr>
<td><tt>eval<nbsp/>miles</tt></td>
<td>»</td>
<td><tt>"M.<nbsp/>Davis"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
When using <tt>eval</tt>, it can be helpful to state explicitly the
context in which the expression should be evaluated, rather than using
the current context. You can obtain a context by calling
<mim><file>kernel</file><front>Kernel</front><back>binding</back><mref>binding</mref></mim> at the desired point.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!-class Cents
!- def initialize(a)
!- @amt = a
!- end
!- def to_s
!- "$0." + @amt.to_s + "USD"
!- end
!-end
class CoinSlot
def initialize(amt=Cents.new(25))
@amt = amt
$here = binding
end
end
a = CoinSlot.new
eval "puts @amt", $here
eval "puts @amt"
]]></fullcode>
class<nbsp/>CoinSlot
<nbsp/><nbsp/>def<nbsp/>initialize(amt=Cents.new(25))
<nbsp/><nbsp/><nbsp/><nbsp/>@amt<nbsp/>=<nbsp/>amt
<nbsp/><nbsp/><nbsp/><nbsp/>$here<nbsp/>=<nbsp/>binding
<nbsp/><nbsp/>end
end
<p/>
a<nbsp/>=<nbsp/>CoinSlot.new
eval<nbsp/>"puts<nbsp/>@amt",<nbsp/>$here
eval<nbsp/>"puts<nbsp/>@amt"
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
$0.25USD
nil
</alltt>
</codefragment>
<p/>
The first <tt>eval</tt> evaluates <tt>@amt</tt> in the context of the instance
of class <classname>CoinSlot</classname>. The second <tt>eval</tt> evaluates <tt>@amt</tt> in
the context of <classname>Object</classname>, where the instance variable <tt>@amt</tt> is
not defined.
<subsection>Performance Considerations</subsection>
<p/>
As we've seen in this section, there are several ways to invoke an
arbitrary method of some object: <cim><file>object</file><front>Object</front><back>send</back><mref>send</mref></cim>,
<cim><file>method</file><front>Method</front><back>call</back><mref>call</mref></cim>, and the various flavors of <meth>eval</meth>.
<p/>
You may prefer to use any one of these techniques depending on your
needs, but be aware that <tt>eval</tt> is significantly slower than the
others (or, for optimistic readers, <tt>send</tt> and <tt>call</tt> are
significantly faster than <tt>eval</tt>).
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ require "benchmark" # from the Ruby Application Archive
include Benchmark
test = "Stormy Weather"
m = test.method(:length)
n = 100000
bm(12) {|x|
x.report("call") { n.times { m.call } }
x.report("send") { n.times { test.send(:length) } }
x.report("eval") { n.times { eval "test.length" } }
}
]]></fullcode>
require<nbsp/>"benchmark"<nbsp/><nbsp/><nbsp/>#<nbsp/>from<nbsp/>the<nbsp/>Ruby<nbsp/>Application<nbsp/>Archive
include<nbsp/>Benchmark
<p/>
test<nbsp/>=<nbsp/>"Stormy<nbsp/>Weather"
m<nbsp/>=<nbsp/>test.method(:length)
n<nbsp/>=<nbsp/>100000
<p/>
bm(12)<nbsp/>{|x|
<nbsp/><nbsp/>x.report("call")<nbsp/>{<nbsp/>n.times<nbsp/>{<nbsp/>m.call<nbsp/>}<nbsp/>}
<nbsp/><nbsp/>x.report("send")<nbsp/>{<nbsp/>n.times<nbsp/>{<nbsp/>test.send(:length)<nbsp/>}<nbsp/>}
<nbsp/><nbsp/>x.report("eval")<nbsp/>{<nbsp/>n.times<nbsp/>{<nbsp/>eval<nbsp/>"test.length"<nbsp/>}<nbsp/>}
}
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>user<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>system<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>total<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>real
call<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>0.270000<nbsp/><nbsp/><nbsp/>0.000000<nbsp/><nbsp/><nbsp/>0.270000<nbsp/>(<nbsp/><nbsp/>0.243899)
send<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>0.250000<nbsp/><nbsp/><nbsp/>0.000000<nbsp/><nbsp/><nbsp/>0.250000<nbsp/>(<nbsp/><nbsp/>0.227987)
eval<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>2.990000<nbsp/><nbsp/><nbsp/>0.050000<nbsp/><nbsp/><nbsp/>3.040000<nbsp/>(<nbsp/><nbsp/>2.929909)
</alltt>
</codefragment>
<section>System Hooks</section>
<p/>
A <em>hook</em> is a technique that lets you trap some Ruby event, such
as object creation.
<p/>
The simplest hook technique in Ruby is to intercept calls to methods
in system classes. Perhaps you want to log all the operating system
commands your program executes. Simply rename the method
<mmm><file>kernel</file><front>Kernel</front><back>system</back><mref>system</mref></mmm><footnote>This Eiffel-inspired
idiom of renaming a
feature and redefining a new one is very useful, but be aware that
it can cause problems. If a subclass does the same thing, and
renames the methods using the same names, you'll end up with an
infinite loop. You can avoid this by aliasing your methods to a
unique symbol name or by using a consistent naming convention.</footnote>
and substitute it with one of your own that both logs the command and
calls the original <modulename>Kernel</modulename> method.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ module Kernel
alias_method :old_system, :system
def system(*args)
result = old_system(*args)
puts "system(#{args.join(', ')}) returned #{result}"
result
end
end
system("date")
system("kangaroo", "-hop 10", "skippy")
]]></fullcode>
module<nbsp/>Kernel
<nbsp/><nbsp/>alias_method<nbsp/>:old_system,<nbsp/>:system
<nbsp/><nbsp/>def<nbsp/>system(*args)
<nbsp/><nbsp/><nbsp/><nbsp/>result<nbsp/>=<nbsp/>old_system(*args)
<nbsp/><nbsp/><nbsp/><nbsp/>puts<nbsp/>"system(#{args.join(',<nbsp/>')})<nbsp/>returned<nbsp/>#{result}"
<nbsp/><nbsp/><nbsp/><nbsp/>result
<nbsp/><nbsp/>end
end
<p/>
system("date")
system("kangaroo",<nbsp/>"-hop<nbsp/>10",<nbsp/>"skippy")
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
Sun<nbsp/>Mar<nbsp/><nbsp/>4<nbsp/>23:25:46<nbsp/>CST<nbsp/>2001
system(date)<nbsp/>returned<nbsp/>true
system(kangaroo,<nbsp/>-hop<nbsp/>10,<nbsp/>skippy)<nbsp/>returned<nbsp/>false
</alltt>
</codefragment>
<p/>
A more powerful hook is catching objects as they are created.
If you can be
present when every object is born, you can do all sorts of interesting
things: you can wrap them, add methods to them, remove methods from them, add them
to containers to implement persistence, you name it. We'll show a
simple example here: we'll add a timestamp to every object as it's
created.
<p/>
One way to hook object creation is to do our method renaming trick on
<cim><file>class</file><front>Class</front><back>new</back><mref>new</mref></cim>, the method that's called to allocate space for a new
object. The technique isn't perfect---some built-in objects, such as
literal strings, are constructed without calling <meth>new</meth>---but
it'll work just fine for objects we write.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!- class Object
!- def timestamp
!- return @timestamp
!- end
!- def timestamp=(aTime)
!- @timestamp = aTime
!- end
!- end
class Class
alias_method :old_new, :new
def new(*args)
result = old_new(*args)
result.timestamp = Time.now
return result
end
end
]]></fullcode>
class<nbsp/>Class
<nbsp/><nbsp/>alias_method<nbsp/>:old_new,<nbsp/><nbsp/>:new
<nbsp/><nbsp/>def<nbsp/>new(*args)
<nbsp/><nbsp/><nbsp/><nbsp/>result<nbsp/>=<nbsp/>old_new(*args)
<nbsp/><nbsp/><nbsp/><nbsp/>result.timestamp<nbsp/>=<nbsp/>Time.now
<nbsp/><nbsp/><nbsp/><nbsp/>return<nbsp/>result
<nbsp/><nbsp/>end
end
</alltt>
</codefragment>
<p/>
We'll also need to add a timestamp attribute to every object in the
system. We can do this by hacking class <classname>Object</classname> itself.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ class Object
def timestamp
return @timestamp
end
def timestamp=(aTime)
@timestamp = aTime
end
end
!- class Class
!- alias_method :old_new, :new
!- def new(*args)
!- result = old_new(*args)
!- result.timestamp = Time.now
!- return result
!- end
!- end
]]></fullcode>
class<nbsp/>Object
<nbsp/><nbsp/>def<nbsp/>timestamp
<nbsp/><nbsp/><nbsp/><nbsp/>return<nbsp/>@timestamp
<nbsp/><nbsp/>end
<nbsp/><nbsp/>def<nbsp/>timestamp=(aTime)
<nbsp/><nbsp/><nbsp/><nbsp/>@timestamp<nbsp/>=<nbsp/>aTime
<nbsp/><nbsp/>end
end
</alltt>
</codefragment>
<p/>
Finally, we can run a test. We'll create a couple of objects a few
seconds apart and check their timestamps.
<p/>
<codefragment>
<fullcode><![CDATA[!- class Object
!- def timestamp
!- return @timestamp
!- end
!- def timestamp=(aTime)
!- @timestamp = aTime
!- end
!- end
!- class Class
!- alias_method :old_new, :new
!- def new(*args)
!- result = old_new(*args)
!- result.timestamp = Time.now
!- return result
!- end
!- end
class Test
end
obj1 = Test.new
sleep 2 #!sh!
obj2 = Test.new
obj1.timestamp
obj2.timestamp
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>class<nbsp/>Test</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td colspan="3"><tt>obj1<nbsp/>=<nbsp/>Test.new</tt></td>
</tr>
<tr>
<td colspan="3"><tt>sleep<nbsp/>2</tt></td>
</tr>
<tr>
<td colspan="3"><tt>obj2<nbsp/>=<nbsp/>Test.new</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>obj1.timestamp</tt></td>
<td>»</td>
<td><tt>Sun<nbsp/>Mar<nbsp/>04<nbsp/>23:25:46<nbsp/>CST<nbsp/>2001</tt></td>
</tr>
<tr>
<td><tt>obj2.timestamp</tt></td>
<td>»</td>
<td><tt>Sun<nbsp/>Mar<nbsp/>04<nbsp/>23:25:48<nbsp/>CST<nbsp/>2001</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<p/>
All this method renaming is fine, and it really does work. However,
there are other, more refined ways to get inside a running
program. Ruby provides several callback methods that let you trap
certain events in a controlled way.
<subsection>Runtime Callbacks</subsection>
<p/>
You can be notified whenever one of the following events occurs:
<p/>
<table>
<th>
<td><b>Event</b></td>
<td><b>Callback Method</b></td>
</th>
<tr>
<td>Adding an instance method</td>
<td><cim><file>module</file><front>Module</front><back>method_added</back><mref>method_added</mref></cim></td>
</tr>
<tr>
<td>Adding a singleton method</td>
<td><mmm><file>kernel</file><front>Kernel</front><back>singleton_method_added</back><mref>singleton_method_added</mref></mmm></td>
</tr>
<tr>
<td>Subclassing a class</td>
<td><cim><file>class</file><front>Class</front><back>inherited</back><mref>inherited</mref></cim></td>
</tr>
<tr>
<td>Mixing in a module</td>
<td><cim><file>module</file><front>Module</front><back>extend_object</back><mref>extend_object</mref></cim></td>
</tr>
<bottomrule/></table>
<p/>
These techniques are all illustrated in the library descriptions for
each callback method. At runtime, these methods will be called by the
system when the specified event occurs. By default, these methods do
nothing. If you want to be notified when one of these events happens,
just define the callback method, and you're in.
<p/>
Keeping track of method creation and class and module usage lets you
build an accurate picture of the dynamic state of your program. This
can be important. For example, you may have written code that wraps
all the methods in a class, perhaps to add transactional support or
to implement some form of delegation. This is only half the job: the
dynamic nature of Ruby means that users of this class could add new
methods to it at any time. Using these callbacks, you can write
code that wraps these new methods as they are created.
<section>Tracing Your Program's Execution</section>
<p/>
While we're having fun reflecting on all the objects and classes in
our programs, let's not forget about the humble statements that make
our code actually do things. It turns out that Ruby lets us look at
these statements, too.
<p/>
First, you can watch the interpreter as it executes code.
<tt>set_trace_func</tt>
executes a <tt>Proc</tt> with all sorts of juicy
debugging information whenever a new source line is executed,
methods are called, objects are created, and so on. There's a full description
on page 426, but here's a taste.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ class Test
def test
a = 1
b = 2
end
end
set_trace_func proc { |event, file, line, id, binding, classname|
!- file = "prog.rb"
!- line -= 2 if line > __LINE__
printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname
}
t = Test.new
t.test
]]></fullcode>
class<nbsp/>Test
<nbsp/><nbsp/>def<nbsp/>test
<nbsp/><nbsp/><nbsp/><nbsp/>a<nbsp/>=<nbsp/>1
<nbsp/><nbsp/><nbsp/><nbsp/>b<nbsp/>=<nbsp/>2
<nbsp/><nbsp/>end
end
<p/>
set_trace_func<nbsp/>proc<nbsp/>{<nbsp/>|event,<nbsp/>file,<nbsp/>line,<nbsp/>id,<nbsp/>binding,<nbsp/>classname|
<nbsp/><nbsp/>printf<nbsp/>"%8s<nbsp/>%s:%-2d<nbsp/>%10s<nbsp/>%8s\n",<nbsp/>event,<nbsp/>file,<nbsp/>line,<nbsp/>id,<nbsp/>classname
}
t<nbsp/>=<nbsp/>Test.new
t.test
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
<nbsp/><nbsp/><nbsp/><nbsp/>line<nbsp/>prog.rb:11<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>false
<nbsp/><nbsp/>c-call<nbsp/>prog.rb:11<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>new<nbsp/><nbsp/><nbsp/><nbsp/>Class
<nbsp/><nbsp/>c-call<nbsp/>prog.rb:11<nbsp/>initialize<nbsp/><nbsp/><nbsp/>Object
c-return<nbsp/>prog.rb:11<nbsp/>initialize<nbsp/><nbsp/><nbsp/>Object
c-return<nbsp/>prog.rb:11<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>new<nbsp/><nbsp/><nbsp/><nbsp/>Class
<nbsp/><nbsp/><nbsp/><nbsp/>line<nbsp/>prog.rb:12<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>false
<nbsp/><nbsp/><nbsp/><nbsp/>call<nbsp/>prog.rb:2<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>test<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>Test
<nbsp/><nbsp/><nbsp/><nbsp/>line<nbsp/>prog.rb:3<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>test<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>Test
<nbsp/><nbsp/><nbsp/><nbsp/>line<nbsp/>prog.rb:4<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>test<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>Test
<nbsp/><nbsp/>return<nbsp/>prog.rb:4<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>test<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>Test
</alltt>
</codefragment>
<p/>
There's also a method <tt>trace_var</tt> (described
on page 431) that lets you add a hook to a global variable; whenever
an assignment is made to the global, your <classname>Proc</classname> object is invoked.
<subsection>How Did We Get Here?</subsection>
<p/>
A fair question, and one we ask ourselves regularly. Mental lapses
aside, in Ruby at least you can find out exactly ``how you got there''
by using the method <tt>caller</tt>,
which returns an <tt>Array</tt> of
<classname>String</classname> objects representing the current call stack.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ def catA
# puts caller.join("\n")
!- puts caller.join("\n").gsub(/-:(\d+)/) { "prog.rb:#{$1.to_i-1}" }
end
def catB
catA
end
def catC
catB
end
catC
]]></fullcode>
def<nbsp/>catA
<nbsp/><nbsp/>puts<nbsp/>caller.join("\n")
end
def<nbsp/>catB
<nbsp/><nbsp/>catA
end
def<nbsp/>catC
<nbsp/><nbsp/>catB
end
catC
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
prog.rb:5:in<nbsp/>`catB'
prog.rb:8:in<nbsp/>`catC'
prog.rb:10
</alltt>
</codefragment>
<p/>
Once you've figured out how you got there, where you go next is up to
you.
<section>Marshaling and Distributed Ruby</section>
<p/>
Java features the ability to <em>serialize</em> objects, letting you
store them somewhere and reconstitute them when needed. You might
use this facility, for instance, to save a tree of objects that
represent some portion of application state---a document, a CAD
drawing, a piece of music, and so on.
<p/>
Ruby calls this kind of serialization
<em>marshaling</em>.<footnote>Think of railroad marshaling yards
where individual cars are assembled in sequence into a complete
train, which is then dispatched somewhere.</footnote> Saving an object
and some or all of its components is done using the method
<mmm><file>marshal</file><front>Marshal</front><back>dump</back><mref>dump</mref></mmm>. Typically, you will dump an entire object tree
starting with some given object. Later on, you can reconstitute the
object using <mmm><file>marshal</file><front>Marshal</front><back>load</back><mref>load</mref></mmm>.
<p/>
Here's a short example. We have a class <classname>Chord</classname> that holds a
collection of musical notes. We'd like to save away a particularly
wonderful chord so our grandchildren can load it into Ruby Version
23.5 and savor it, too. Let's start off with the classes for <classname>Note</classname>
and <classname>Chord</classname>.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ class Note
attr :value
def initialize(val)
@value = val
end
def to_s
@value.to_s
end
end
class Chord
def initialize(arr)
@arr = arr
end
def play
@arr.join('-')
end
end
!- c = Chord.new( [ Note.new("G"), Note.new("Bb"),
!- Note.new("Db"), Note.new("E") ] )
!-
!- File.open("posterity", "w+") do |f|
!- Marshal.dump(c, f)
!- end
]]></fullcode>
class<nbsp/>Note
<nbsp/><nbsp/>attr<nbsp/>:value
<nbsp/><nbsp/>def<nbsp/>initialize(val)
<nbsp/><nbsp/><nbsp/><nbsp/>@value<nbsp/>=<nbsp/>val
<nbsp/><nbsp/>end
<nbsp/><nbsp/>def<nbsp/>to_s
<nbsp/><nbsp/><nbsp/><nbsp/>@value.to_s
<nbsp/><nbsp/>end
end
<p/>
class<nbsp/>Chord
<nbsp/><nbsp/>def<nbsp/>initialize(arr)
<nbsp/><nbsp/><nbsp/><nbsp/>@arr<nbsp/>=<nbsp/>arr
<nbsp/><nbsp/>end
<nbsp/><nbsp/>def<nbsp/>play
<nbsp/><nbsp/><nbsp/><nbsp/>@arr.join('-')
<nbsp/><nbsp/>end
end
</alltt>
</codefragment>
<p/>
Now we'll create our masterpiece, and use <mmm><file>marshal</file><front>Marshal</front><back>dump</back><mref>dump</mref></mmm> to save
a serialized version of it to disk.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[!- class Note
!- attr :value
!- def initialize(val)
!- @value = val
!- end
!- def to_s
!- @value.to_s
!- end
!- end
!-
!- class Chord
!- def initialize(arr)
!- @arr = arr
!- end
!- def play
!- @arr.join('-')
!- end
!- end
c = Chord.new( [ Note.new("G"), Note.new("Bb"),
Note.new("Db"), Note.new("E") ] )
File.open("posterity", "w+") do |f|
Marshal.dump(c, f)
end
]]></fullcode>
c<nbsp/>=<nbsp/>Chord.new(<nbsp/>[<nbsp/>Note.new("G"),<nbsp/><nbsp/>Note.new("Bb"),
<nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/><nbsp/>Note.new("Db"),<nbsp/>Note.new("E")<nbsp/>]<nbsp/>)
<p/>
File.open("posterity",<nbsp/>"w+")<nbsp/>do<nbsp/>|f|
<nbsp/><nbsp/>Marshal.dump(c,<nbsp/>f)
end
</alltt>
</codefragment>
<p/>
Finally, our grandchildren read it in, and are transported by our
creation's beauty.
<p/>
<codefragment>
<fullcode><![CDATA[!- class Note
!- attr :value
!- def initialize(val)
!- @value = val
!- end
!- def to_s
!- @value.to_s
!- end
!- end
!-
!- class Chord
!- def initialize(arr)
!- @arr = arr
!- end
!- def play
!- @arr.join('-')
!- end
!- end
!- c = Chord.new( [ Note.new("G"), Note.new("Bb"),
!- Note.new("Db"), Note.new("E") ] )
!-
!- File.open("posterity", "w+") do |f|
!- Marshal.dump(c, f)
!- end
!- chord = nil
File.open("posterity") do |f|
chord = Marshal.load(f)
end
chord.play
]]></fullcode><rubycode>
<tr>
<td colspan="3"><tt>File.open("posterity")<nbsp/>do<nbsp/>|f|</tt></td>
</tr>
<tr>
<td colspan="3"><tt><nbsp/><nbsp/>chord<nbsp/>=<nbsp/>Marshal.load(f)</tt></td>
</tr>
<tr>
<td colspan="3"><tt>end</tt></td>
</tr>
<tr>
<td colspan="3"><tt></tt></td>
</tr>
<tr>
<td><tt>chord.play</tt></td>
<td>»</td>
<td><tt>"G-Bb-Db-E"</tt></td>
</tr>
</rubycode>
<p/>
</codefragment>
<subsection>Custom Serialization Strategy</subsection>
<p/>
Not all objects can be dumped: bindings, procedure objects, instances
of class <classname>IO</classname>, and singleton objects cannot be saved outside of the
running Ruby environment (a <exception>TypeError</exception> will be raised if you try).
Even if your object doesn't contain one of these problematic objects,
you may want to take control of object serialization yourself.
<p/>
<modulename>Marshal</modulename> provides the hooks you need. In the objects that require
custom serialization, simply implement two methods: an instance method
called <meth>_dump</meth>,
which writes the object out to a string, and a
class method called <meth>_load</meth>, which reads a string that you'd
previously created and converts it into a new object.
<p/>
For instance, here is a sample class that defines its own
serialization.
For whatever reasons, <classname>Special</classname> doesn't want to save one of its
internal data members, ``<tt>@volatile</tt>''.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ class Special
def initialize(valuable)
@valuable = valuable
@volatile = "Goodbye"
end
def _dump(depth)
@valuable.to_str
end
def Special._load(str)
result = Special.new(str);
end
def to_s
"#{@valuable} and #{@volatile}"
end
end
a = Special.new("Hello, World")
data = Marshal.dump(a)
obj = Marshal.load(data)
puts obj
]]></fullcode>
class<nbsp/>Special
<nbsp/><nbsp/>def<nbsp/>initialize(valuable)
<nbsp/><nbsp/><nbsp/><nbsp/>@valuable<nbsp/>=<nbsp/>valuable
<nbsp/><nbsp/><nbsp/><nbsp/>@volatile<nbsp/>=<nbsp/>"Goodbye"
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>_dump(depth)
<nbsp/><nbsp/><nbsp/><nbsp/>@valuable.to_str
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>Special._load(str)
<nbsp/><nbsp/><nbsp/><nbsp/>result<nbsp/>=<nbsp/>Special.new(str);
<nbsp/><nbsp/>end
<p/>
<nbsp/><nbsp/>def<nbsp/>to_s
<nbsp/><nbsp/><nbsp/><nbsp/>"#{@valuable}<nbsp/>and<nbsp/>#{@volatile}"
<nbsp/><nbsp/>end
end
<p/>
a<nbsp/>=<nbsp/>Special.new("Hello,<nbsp/>World")
data<nbsp/>=<nbsp/>Marshal.dump(a)
obj<nbsp/>=<nbsp/>Marshal.load(data)
puts<nbsp/>obj
</alltt>
</codefragment>
<em>produces:</em>
<codefragment><alltt>
Hello,<nbsp/>World<nbsp/>and<nbsp/>Goodbye
</alltt>
</codefragment>
<p/>
For more details, see the reference section on <modulename>Marshal</modulename>
beginning on page 432.
<subsection>Distributed Ruby</subsection>
Since we can serialize an object or a set of objects into a form
suitable for out-of-process storage, we can use this capability for
the <em>transmission</em> of objects from one process to another.
Couple this capability with the power of networking, and
<em>voilà</em>: you have a distributed object system. To save you
the trouble of having to write the code, we suggest downloading
Masatoshi Seki's Distributed Ruby library (drb) from the RAA.
<p/>
Using drb, a Ruby process may act as a server, as a client, or as both. A
drb server acts as a source of objects, while a client is a user of
those objects. To the client, it appears that the objects are local,
but in reality the code is still being executed remotely.
<p/>
A server starts a service by associating an object with a given port.
Threads are created internally to handle incoming requests on that
port, so remember to join the drb thread before exiting your program.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ require 'drb'
class TestServer
def doit
"Hello, Distributed World"
end
end
aServerObject = TestServer.new
DRb.start_service('druby://localhost:9000', aServerObject)
DRb.thread.join # Don't exit just yet!
]]></fullcode>
require<nbsp/>'drb'
<p/>
class<nbsp/>TestServer
<nbsp/><nbsp/>def<nbsp/>doit
<nbsp/><nbsp/><nbsp/><nbsp/>"Hello,<nbsp/>Distributed<nbsp/>World"
<nbsp/><nbsp/>end
end
<p/>
aServerObject<nbsp/>=<nbsp/>TestServer.new
DRb.start_service('druby://localhost:9000',<nbsp/>aServerObject)
DRb.thread.join<nbsp/>#<nbsp/>Don't<nbsp/>exit<nbsp/>just<nbsp/>yet!
</alltt>
</codefragment>
<p/>
A simple drb client simply creates a local drb object and associates
it with the object on the remote server; the local object is a proxy.
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ require 'drb'
DRb.start_service()
obj = DRbObject.new(nil, 'druby://localhost:9000')
# Now use obj
p obj.doit
]]></fullcode>
require<nbsp/>'drb'
DRb.start_service()
obj<nbsp/>=<nbsp/>DRbObject.new(nil,<nbsp/>'druby://localhost:9000')
#<nbsp/>Now<nbsp/>use<nbsp/>obj
p<nbsp/>obj.doit
</alltt>
</codefragment>
<p/>
The client connects to the server and calls the method <tt>doit</tt>, which
returns a string that the client prints out:
<p/>
<codefragment>
<alltt><fullcode><![CDATA[ "Hello, Distributed World"
]]></fullcode>
"Hello,<nbsp/>Distributed<nbsp/>World"
</alltt>
</codefragment>
<p/>
The initial <tt>nil</tt> argument to <tt>DRbObject</tt> indicates that we want
to attach to a new distributed object. We could also use an
existing object.
<p/>
Ho hum, you say. This sounds like Java's RMI, or CORBA, or whatever.
Yes, it is a functional distributed object mechanism---but it is
written in just 200 lines of Ruby code. No C, nothing fancy, just
plain old Ruby code. Of course, there's no naming service or trader
service, or anything like you'd see in CORBA, but it is simple and
reasonably fast. On the 233MHz test system, this sample code runs at
about 50 remote message calls per second.
<p/>
And, if you like the look of Sun's JavaSpaces, the basis of their JINI
architecture, you'll be interested to know that drb is distributed with
a short module that does the same kind of thing. JavaSpaces is based
on a technology called Linda. To prove that its Japanese author has a
sense of humor, Ruby's version of Linda is known as ``rinda.''
<section>Compile Time? Runtime? Anytime!</section>
<p/>
The important thing to remember about Ruby is that there isn't a big
difference between ``compile time'' and ``runtime.'' It's all the
same. You can add code to a running process. You
can redefine methods on the fly, change their scope from <tt>public</tt>
to <tt>private</tt>, and so on. You can even alter basic types, such
as <classname>Class</classname> and <classname>Object</classname>.
<p/>
Once you get used to this flexibility, it is hard to go back to a
static language such as C++, or even to a half-static language such as
Java.
<p/>
But then, why would you want to?
</chapter>
</ppdoc>
|