File: c_library_integration.rs

package info (click to toggle)
rust-apr 0.3.4-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 492 kB
  • sloc: makefile: 4
file content (175 lines) | stat: -rw-r--r-- 5,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! Example demonstrating how to use apr-rs when creating bindings for C libraries that use APR.
//!
//! This example shows the typical pattern for integrating with APR-based C libraries:
//! 1. Creating APR memory pools
//! 2. Passing APR types to C functions
//! 3. Handling APR status codes
//! 4. Managing memory lifecycle

use apr::{Pool, Result, Status};
use std::ffi::CString;

// Example: Simulating bindings for a hypothetical C library that uses APR
// In a real scenario, these would be actual FFI declarations to your C library

#[allow(dead_code)]
mod ffi {
    use std::os::raw::{c_char, c_int};

    // Simulated C function signatures that would come from your C library
    // In reality, these would be:
    // extern "C" {
    //     pub fn library_init(pool: *mut apr_sys::apr_pool_t) -> apr_sys::apr_status_t;
    //     pub fn library_process_data(
    //         data: *const c_char,
    //         len: c_int,
    //         pool: *mut apr_sys::apr_pool_t
    //     ) -> apr_sys::apr_status_t;
    //     pub fn library_cleanup(pool: *mut apr_sys::apr_pool_t) -> apr_sys::apr_status_t;
    // }

    // For this example, we'll simulate these functions
    pub unsafe fn library_init(_pool: *mut apr_sys::apr_pool_t) -> apr_sys::apr_status_t {
        0 // APR_SUCCESS
    }

    pub unsafe fn library_process_data(
        _data: *const c_char,
        _len: c_int,
        _pool: *mut apr_sys::apr_pool_t,
    ) -> apr_sys::apr_status_t {
        0 // APR_SUCCESS
    }

    pub unsafe fn library_cleanup(_pool: *mut apr_sys::apr_pool_t) -> apr_sys::apr_status_t {
        0 // APR_SUCCESS
    }
}

/// Wrapper struct for our C library
pub struct CLibraryWrapper {
    pool: Pool,
}

impl CLibraryWrapper {
    /// Initialize the C library with its own memory pool
    pub fn new() -> Result<Self> {
        // Create a dedicated pool for this library instance
        let pool = Pool::new();

        // Initialize the C library
        let status = unsafe { Status::from(ffi::library_init(pool.as_mut_ptr())) };

        if !status.is_success() {
            return Err(status.into());
        }

        Ok(CLibraryWrapper { pool })
    }

    /// Process data using the C library
    pub fn process_data(&self, data: &str) -> Result<()> {
        // Convert Rust string to C string
        let c_data = CString::new(data)
            .map_err(|_| apr::Error::from(Status::from(apr_sys::APR_EINVAL as i32)))?;

        // Call the C function
        let status = unsafe {
            Status::from(ffi::library_process_data(
                c_data.as_ptr(),
                data.len() as i32,
                self.pool.as_mut_ptr(),
            ))
        };

        if status.is_success() {
            Ok(())
        } else {
            Err(status.into())
        }
    }

    /// Create a sub-operation with its own memory scope
    pub fn scoped_operation<F, R>(&self, operation: F) -> Result<R>
    where
        F: FnOnce(&Pool) -> Result<R>,
    {
        // Create a subpool for this operation
        let subpool = Pool::new();

        // Execute the operation with the subpool
        // Subpool is automatically cleaned up when dropped
        operation(&subpool)
    }
}

impl Drop for CLibraryWrapper {
    fn drop(&mut self) {
        // Clean up the C library
        unsafe {
            let _ = ffi::library_cleanup(self.pool.as_mut_ptr());
        }
        // Pool is automatically cleaned up when dropped
    }
}

fn main() -> Result<()> {
    println!("Demonstrating C library integration with APR...\n");

    // Initialize our wrapped C library
    let library = CLibraryWrapper::new()?;
    println!("✓ C library initialized with APR pool");

    // Process some data
    library.process_data("Hello from Rust!")?;
    println!("✓ Processed data through C library");

    // Demonstrate scoped memory management
    library.scoped_operation(|subpool| {
        println!("✓ Created subpool for scoped operation");

        // In a real scenario, you might pass this subpool to C functions
        // that need temporary memory
        let _subpool_ptr = subpool.as_mut_ptr();

        // Simulate some work...
        println!("  Performing work with subpool...");

        Ok(())
    })?;
    println!("✓ Subpool automatically cleaned up");

    // Demonstrate error handling
    match library.process_data("Another message") {
        Ok(()) => println!("✓ Successfully processed second message"),
        Err(e) => eprintln!("✗ Error processing message: {}", e),
    }

    println!("\n✓ Library will be cleaned up when dropped");

    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_library_lifecycle() {
        // Test that we can create and destroy the library wrapper
        let library = CLibraryWrapper::new().expect("Failed to create library");
        drop(library);
    }

    #[test]
    fn test_scoped_operations() {
        let library = CLibraryWrapper::new().expect("Failed to create library");

        let result = library.scoped_operation(|_pool| {
            // Simulate some operation
            Ok(42)
        });

        assert_eq!(result.unwrap(), 42);
    }
}