1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
//! ARF library for converting to and from ARFs.
#include "arf.h"
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
// UTF-8 encoding for U+FEFF, which marks at the beginning of an ARF string.
static const uint8_t utf8_bom[] = { 0xef, 0xbb, 0xbf };
// UTF-8 encoding for U+FFFD, which is used in the lossy portion of an ARF
// string to replace invalid bytes.
static const uint8_t utf8_replacement[] = { 0xef, 0xbf, 0xbd };
// The number of bytes in a byte escape sequence.
static const size_t sizeof_escaped_byte = 2;
// Return a pointer to the first invalid byte, or a pointer to one past the end
// if the entire string is valid UTF-8.
static const uint8_t *find_invalid_utf8(const uint8_t *ptr, size_t len) {
const uint8_t *end = ptr + len;
while (ptr != end) {
if (ptr[0] < 0x80) {
ptr += 1;
} else if ((ptr[0] & 0xe0) == 0xc0) {
if ((end - ptr) < 2 ||
(ptr[0] & 0xfe) == 0xc0 ||
(ptr[1] & 0xc0) != 0x80)
{
break;
}
ptr += 2;
} else if ((ptr[0] & 0xf0) == 0xe0) {
if ((end - ptr) < 3 ||
(ptr[0] == 0xe0 && (ptr[1] & 0xe0) == 0x80) ||
(ptr[0] == 0xed && (ptr[1] & 0xe0) == 0xa0) ||
(ptr[0] == 0xef && ptr[1] == 0xbf && (ptr[2] & 0xfe) == 0xbe) ||
(ptr[1] & 0xc0) != 0x80 ||
(ptr[2] & 0xc0) != 0x80)
{
break;
}
ptr += 3;
} else if ((ptr[0] & 0xf8) == 0xf0) {
if ((end - ptr) < 4 ||
ptr[0] > 0xf4 ||
(ptr[0] == 0xf0 && (ptr[1] & 0xf0) == 0x80) ||
(ptr[0] == 0xf4 && ptr[1] > 0x8f) ||
(ptr[1] & 0xc0) != 0x80 ||
(ptr[2] & 0xc0) != 0x80 ||
(ptr[3] & 0xc0) != 0x80)
{
break;
}
ptr += 4;
} else {
break;
}
}
return ptr;
}
bool arf_is_valid_c_str(const char *c_str) {
// Check that the C-string is all valid UTF-8.
size_t c_str_len = strlen(c_str);
return find_invalid_utf8((const uint8_t *)c_str, c_str_len) ==
(const uint8_t *)c_str + c_str_len;
}
bool arf_has_arf_magic(const uint8_t *ptr, size_t len) {
// ARF strings start with a UTF-8 BOM.
return len >= sizeof(utf8_bom) &&
memcmp(ptr, utf8_bom, sizeof(utf8_bom)) == 0;
}
bool arf_is_valid_arf(const uint8_t *ptr, size_t len) {
// ARF strings begin and end with fixed bytes.
if (!arf_has_arf_magic(ptr, len)) {
return false;
}
ptr += sizeof(utf8_bom);
len -= sizeof(utf8_bom);
// ARF strings are valid UTF-8.
if (find_invalid_utf8(ptr, len) != ptr + len) {
return false;
}
// ARF strings contain a NUL byte separating the replacement portion from
// the NUL-escaped portion.
size_t first_len = strlen((const char *)ptr);
if (first_len >= len) {
return false;
}
// Check that the lossy portion translates to the NUL-escaped portion.
bool any_invalid_bytes = false;
size_t second_begin = first_len + 1;
size_t i = 0, j = second_begin;
while (i != first_len) {
if (ptr[j] == 0) {
// Check the NUL-escaped encoding.
if (len - j < sizeof_escaped_byte || (int8_t)ptr[j + 1] < 0) {
return false;
}
// Check that the escaped string contains a replacement character.
if (first_len - i < sizeof(utf8_replacement) ||
memcmp(ptr + i, utf8_replacement,
sizeof(utf8_replacement)) != 0)
{
return false;
}
i += sizeof(utf8_replacement);
j += sizeof_escaped_byte;
any_invalid_bytes = true;
} else {
// Check that the bytes match.
if (ptr[i] != ptr[j]) {
return false;
}
i += 1;
j += 1;
}
}
// If there weren't any invalid bytes, we shouldn't have an ARF string.
if (!any_invalid_bytes) {
return false;
}
// Arf!
return true;
}
/// Like `arf_sizeof_c_str_arf`, but has `strlen(c_str)` passed in so that it
/// doesn't need to be recomputed.
static size_t arf_sizeof_c_str_arf_impl(const char *c_str, size_t c_str_len) {
// Start with the length of the fixed-length parts of an ARF string.
size_t len = sizeof(utf8_bom) + 1;
// Add the size of both the lossy portion and the NUL-escaped portion.
for (size_t i = 0; i != c_str_len; ) {
const uint8_t *found =
find_invalid_utf8((const uint8_t *)c_str + i, c_str_len - i);
// Copy in valid UTF-8 bytes.
size_t valid_len = (size_t)(found - ((const uint8_t *)c_str + i));
if (__builtin_add_overflow(len, valid_len * 2, &len))
return SIZE_MAX;
i += valid_len;
if (i == c_str_len)
break;
// Handle an invalid byte.
size_t more = sizeof(utf8_replacement) + sizeof_escaped_byte;
if (__builtin_add_overflow(len, more, &len))
return SIZE_MAX;
i += 1;
}
return len;
}
bool arf_categorize_c_str(const char *c_str, size_t *restrict len) {
size_t c_str_len = strlen(c_str);
if (__builtin_expect(find_invalid_utf8((const uint8_t *)c_str, c_str_len) ==
(const uint8_t *)c_str + c_str_len,
true))
{
*len = c_str_len;
return true;
}
*len = arf_sizeof_c_str_arf_impl(c_str, c_str_len);
return false;
}
size_t arf_sizeof_c_str_arf(const char *c_str) {
return arf_sizeof_c_str_arf_impl(c_str, strlen(c_str));
}
void arf_c_str_arf(const char *c_str, uint8_t *ptr) {
size_t c_str_len = strlen(c_str);
memcpy(ptr, utf8_bom, sizeof(utf8_bom));
ptr += sizeof(utf8_bom);
// Encode the replacement-encoded portion.
const uint8_t *in = (const uint8_t*)c_str;
for (size_t len = c_str_len; len != 0; ) {
const uint8_t *invalid = find_invalid_utf8(in, len);
// Copy in valid UTF-8 bytes.
size_t valid_len = (size_t)(invalid - in);
memcpy(ptr, in, valid_len);
ptr += valid_len;
in += valid_len;
len -= valid_len;
if (len == 0)
break;
// Handle an invalid byte.
memcpy(ptr, utf8_replacement, sizeof(utf8_replacement));
ptr += sizeof(utf8_replacement);
in += 1;
len -= 1;
}
*ptr++ = '\0';
// Encode the full-encoded portion.
in = (const uint8_t*)c_str;
for (size_t len = c_str_len; len != 0; ) {
const uint8_t *invalid = find_invalid_utf8(in, len);
// Copy in valid UTF-8 bytes.
size_t valid_len = (size_t)(invalid - in);
memcpy(ptr, in, valid_len);
ptr += valid_len;
in += valid_len;
len -= valid_len;
if (len == 0)
break;
// Emit a NUL-escaped byte.
*ptr++ = '\0';
*ptr++ = *in & INT8_MAX;
in += 1;
len -= 1;
}
}
size_t arf_sizeof_arf_c_str(const uint8_t *ptr, size_t len) {
assert(arf_is_valid_arf(ptr, len));
const uint8_t *end = ptr + len;
// Examine the NUL-escaped portion, which is the non-lossy portion.
ptr += sizeof(utf8_bom);
ptr += strlen((const char *)ptr) + 1;
size_t c_str_len = 0;
while (ptr != end) {
if (*ptr++ == '\0')
ptr++;
c_str_len += 1;
}
// Add one for the terminating NUL.
c_str_len += 1;
return c_str_len;
}
void arf_arf_c_str(const uint8_t *ptr, size_t len, char *__restrict__ c_str) {
assert(arf_is_valid_arf(ptr, len));
const uint8_t *end = ptr + len;
// Examine the NUL-escaped portion, which is the non-lossy portion.
ptr += sizeof(utf8_bom);
ptr += strlen((const char *)ptr) + 1;
// Copy the string data, inverting any escaped bytes.
while (ptr != end) {
uint8_t b = *ptr++;
if (b == '\0')
b = *ptr++ | (uint8_t)INT8_MIN;
*c_str++ = (char)b;
}
// Append the terminating NUL.
*c_str = '\0';
}
|