File: README.md

package info (click to toggle)
rust-average 0.13.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 284 kB
  • sloc: makefile: 2
file content (54 lines) | stat: -rw-r--r-- 1,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# average

Calculate statistics of a sequence iteratively in a single pass, using
constant space and avoiding numerical problems. The calculations can be
easily parallelized by using `merge`.

This crate works without `std`.

[![Documentation Status]][docs.rs]
[![Latest Version]][crates.io]
[![Build Status]][actions]

[Documentation Status]: https://docs.rs/average/badge.svg
[docs.rs]: https://docs.rs/average
[Build Status]: https://github.com/kas-gui/easy-cast/workflows/Tests/badge.svg?event=push
[actions]: https://github.com/vks/average/actions
[Latest Version]: https://img.shields.io/crates/v/average.svg
[crates.io]: https://crates.io/crates/average


## Implemented statistics

* Mean and its error.
* Variance, skewness, kurtosis.
* Arbitrary moments.
* Minimum and maximum.
* Quantile.
* Histogram.


## Crate features

The following features are available:

* `libm` enables `Quantile` (using floating point functions provided by `libm`).
  This is enabled by default. If the `std` feature is also enabled, `std` is
  preferred over `libm`.
* `std` enables `Quantile` (using floating point functions provided by `std`).
* `serde1` enables serialization, via Serde version 1.
* `rayon` enables support for `rayon::iter::FromParallelIterator`.
* `nightly` enables the use of const generics for a histogram implementation
  without macros. Note that nightly features are not stable and therefore not
  all library and compiler versions will be compatible.


## Rust version requirements

Rustc version 1.36 or greater is supported.


## Related Projects

* [`quantiles`](https://crates.io/crates/quantiles):
  Provides quantile estimates with bounded error but using growing space.