1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
use std::time::Instant;
use std::marker::PhantomData;
use std::time::Duration;
use crate::backoff::Backoff;
use crate::clock::Clock;
use crate::default;
#[derive(Debug)]
pub struct ExponentialBackoff<C> {
/// The current retry interval.
pub current_interval: Duration,
/// The initial retry interval.
pub initial_interval: Duration,
/// The randomization factor to use for creating a range around the retry interval.
///
/// A randomization factor of 0.5 results in a random period ranging between 50% below and 50%
/// above the retry interval.
pub randomization_factor: f64,
/// The value to multiply the current interval with for each retry attempt.
pub multiplier: f64,
/// The maximum value of the back off period. Once the retry interval reaches this
/// value it stops increasing.
pub max_interval: Duration,
/// The system time. It is calculated when an [`ExponentialBackoff`](struct.ExponentialBackoff.html) instance is
/// created and is reset when [`retry`](../trait.Operation.html#method.retry) is called.
pub start_time: Instant,
/// The maximum elapsed time after instantiating [`ExponentialBackfff`](struct.ExponentialBackoff.html) or calling
/// [`reset`](trait.Backoff.html#method.reset) after which [`next_backoff`](../trait.Backoff.html#method.reset) returns `None`.
pub max_elapsed_time: Option<Duration>,
/// The clock used to get the current time.
pub clock: C,
}
impl<C> Default for ExponentialBackoff<C>
where
C: Clock + Default,
{
fn default() -> ExponentialBackoff<C> {
let mut eb = ExponentialBackoff {
current_interval: Duration::from_millis(default::INITIAL_INTERVAL_MILLIS),
initial_interval: Duration::from_millis(default::INITIAL_INTERVAL_MILLIS),
randomization_factor: default::RANDOMIZATION_FACTOR,
multiplier: default::MULTIPLIER,
max_interval: Duration::from_millis(default::MAX_INTERVAL_MILLIS),
max_elapsed_time: Some(Duration::from_millis(default::MAX_ELAPSED_TIME_MILLIS)),
clock: C::default(),
start_time: Instant::now(),
};
eb.reset();
eb
}
}
impl<C: Clock> ExponentialBackoff<C> {
/// Returns the elapsed time since start_time.
pub fn get_elapsed_time(&self) -> Duration {
self.clock.now().duration_since(self.start_time)
}
fn get_random_value_from_interval(
randomization_factor: f64,
random: f64,
current_interval: Duration,
) -> Duration {
let current_interval_nanos = duration_to_nanos(current_interval);
let delta = randomization_factor * current_interval_nanos;
let min_interval = current_interval_nanos - delta;
let max_interval = current_interval_nanos + delta;
// Get a random value from the range [minInterval, maxInterval].
// The formula used below has a +1 because if the minInterval is 1 and the maxInterval is 3 then
// we want a 33% chance for selecting either 1, 2 or 3.
let diff = max_interval - min_interval;
let nanos = min_interval + (random * (diff + 1.0));
nanos_to_duration(nanos)
}
fn increment_current_interval(&mut self) -> Duration {
let current_interval_nanos = duration_to_nanos(self.current_interval);
let max_interval_nanos = duration_to_nanos(self.max_interval);
// Check for overflow, if overflow is detected set the current interval to the max interval.
if current_interval_nanos >= max_interval_nanos / self.multiplier {
self.max_interval
} else {
let nanos = current_interval_nanos * self.multiplier;
nanos_to_duration(nanos)
}
}
}
fn duration_to_nanos(d: Duration) -> f64 {
d.as_secs() as f64 * 1_000_000_000.0 + f64::from(d.subsec_nanos())
}
fn nanos_to_duration(nanos: f64) -> Duration {
let secs = nanos / 1_000_000_000.0;
let nanos = nanos as u64 % 1_000_000_000;
Duration::new(secs as u64, nanos as u32)
}
impl<C> Backoff for ExponentialBackoff<C>
where
C: Clock,
{
fn reset(&mut self) {
self.current_interval = self.initial_interval;
self.start_time = self.clock.now();
}
fn next_backoff(&mut self) -> Option<Duration> {
let elapsed_time = self.get_elapsed_time();
match self.max_elapsed_time {
Some(v) if elapsed_time > v => None,
_ => {
let random = rand::random::<f64>();
let randomized_interval = Self::get_random_value_from_interval(
self.randomization_factor,
random,
self.current_interval,
);
self.current_interval = self.increment_current_interval();
if let Some(max_elapsed_time) = self.max_elapsed_time {
if elapsed_time + randomized_interval <= max_elapsed_time {
Some(randomized_interval)
} else {
None
}
} else {
Some(randomized_interval)
}
}
}
}
}
impl<C> Clone for ExponentialBackoff<C>
where
C: Clone,
{
fn clone(&self) -> Self {
let clock = self.clock.clone();
ExponentialBackoff { clock, ..*self }
}
}
/// Builder for [`ExponentialBackoff`](type.ExponentialBackoff.html).
///
/// TODO: Example
#[derive(Debug)]
pub struct ExponentialBackoffBuilder<C> {
initial_interval: Duration,
randomization_factor: f64,
multiplier: f64,
max_interval: Duration,
max_elapsed_time: Option<Duration>,
_clock: PhantomData<C>,
}
impl<C> Default for ExponentialBackoffBuilder<C> {
fn default() -> Self {
Self {
initial_interval: Duration::from_millis(default::INITIAL_INTERVAL_MILLIS),
randomization_factor: default::RANDOMIZATION_FACTOR,
multiplier: default::MULTIPLIER,
max_interval: Duration::from_millis(default::MAX_INTERVAL_MILLIS),
max_elapsed_time: Some(Duration::from_millis(default::MAX_ELAPSED_TIME_MILLIS)),
_clock: PhantomData,
}
}
}
impl<C> ExponentialBackoffBuilder<C>
where
C: Clock + Default,
{
pub fn new() -> Self {
Default::default()
}
/// The initial retry interval.
pub fn with_initial_interval(&mut self, initial_interval: Duration) -> &mut Self {
self.initial_interval = initial_interval;
self
}
/// The randomization factor to use for creating a range around the retry interval.
///
/// A randomization factor of 0.5 results in a random period ranging between 50% below and 50%
/// above the retry interval.
pub fn with_randomization_factor(&mut self, randomization_factor: f64) -> &mut Self {
self.randomization_factor = randomization_factor;
self
}
/// The value to multiply the current interval with for each retry attempt.
pub fn with_multiplier(&mut self, multiplier: f64) -> &mut Self {
self.multiplier = multiplier;
self
}
/// The maximum value of the back off period. Once the retry interval reaches this
/// value it stops increasing.
pub fn with_max_interval(&mut self, max_interval: Duration) -> &mut Self {
self.max_interval = max_interval;
self
}
/// The maximum elapsed time after instantiating [`ExponentialBackfff`](struct.ExponentialBackoff.html) or calling
/// [`reset`](trait.Backoff.html#method.reset) after which [`next_backoff`](../trait.Backoff.html#method.reset) returns `None`.
pub fn with_max_elapsed_time(&mut self, max_elapsed_time: Option<Duration>) -> &mut Self {
self.max_elapsed_time = max_elapsed_time;
self
}
pub fn build(&self) -> ExponentialBackoff<C> {
ExponentialBackoff {
current_interval: self.initial_interval,
initial_interval: self.initial_interval,
randomization_factor: self.randomization_factor,
multiplier: self.multiplier,
max_interval: self.max_interval,
max_elapsed_time: self.max_elapsed_time,
clock: C::default(),
start_time: Instant::now(),
}
}
}
#[cfg(test)]
use crate::clock::SystemClock;
#[test]
fn get_randomized_interval() {
// 33% chance of being 1.
let f = ExponentialBackoff::<SystemClock>::get_random_value_from_interval;
assert_eq!(Duration::new(0, 1), f(0.5, 0.0, Duration::new(0, 2)));
assert_eq!(Duration::new(0, 1), f(0.5, 0.33, Duration::new(0, 2)));
// 33% chance of being 2.
assert_eq!(Duration::new(0, 2), f(0.5, 0.34, Duration::new(0, 2)));
assert_eq!(Duration::new(0, 2), f(0.5, 0.66, Duration::new(0, 2)));
// 33% chance of being 3.
assert_eq!(Duration::new(0, 3), f(0.5, 0.67, Duration::new(0, 2)));
assert_eq!(Duration::new(0, 3), f(0.5, 0.99, Duration::new(0, 2)));
}
#[test]
fn exponential_backoff_builder() {
let initial_interval = Duration::from_secs(1);
let max_interval = Duration::from_secs(2);
let multiplier = 3.0;
let randomization_factor = 4.0;
let backoff: ExponentialBackoff<SystemClock> = ExponentialBackoffBuilder::new()
.with_initial_interval(initial_interval)
.with_multiplier(multiplier)
.with_randomization_factor(randomization_factor)
.with_max_interval(max_interval)
.with_max_elapsed_time(None)
.build();
assert_eq!(backoff.initial_interval, initial_interval);
assert_eq!(backoff.current_interval, initial_interval);
assert_eq!(backoff.multiplier, multiplier);
assert_eq!(backoff.randomization_factor, randomization_factor);
assert_eq!(backoff.max_interval, max_interval);
assert_eq!(backoff.max_elapsed_time, None);
}
#[test]
fn exponential_backoff_default_builder() {
let backoff: ExponentialBackoff<SystemClock> = ExponentialBackoffBuilder::new().build();
assert_eq!(
backoff.initial_interval,
Duration::from_millis(default::INITIAL_INTERVAL_MILLIS)
);
assert_eq!(
backoff.current_interval,
Duration::from_millis(default::INITIAL_INTERVAL_MILLIS)
);
assert_eq!(backoff.multiplier, default::MULTIPLIER);
assert_eq!(backoff.randomization_factor, default::RANDOMIZATION_FACTOR);
assert_eq!(
backoff.max_interval,
Duration::from_millis(default::MAX_INTERVAL_MILLIS)
);
assert_eq!(
backoff.max_elapsed_time,
Some(Duration::from_millis(default::MAX_ELAPSED_TIME_MILLIS))
);
}
|