1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#ifndef CS_LLVM_SUPPORT_MATHEXTRAS_H
#define CS_LLVM_SUPPORT_MATHEXTRAS_H
#if defined(_WIN32_WCE) && (_WIN32_WCE < 0x800)
#include "windowsce/intrin.h"
#elif defined(_MSC_VER)
#include <intrin.h>
#endif
#ifndef __cplusplus
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#define inline /* inline */
#endif
#endif
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
static inline uint32_t Hi_32(uint64_t Value) {
return (uint32_t)(Value >> 32);
}
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
static inline uint32_t Lo_32(uint64_t Value) {
return (uint32_t)(Value);
}
/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
/// bit width.
static inline bool isUIntN(unsigned N, uint64_t x) {
return x == (x & (~0ULL >> (64 - N)));
}
/// isIntN - Checks if an signed integer fits into the given (dynamic)
/// bit width.
//static inline bool isIntN(unsigned N, int64_t x) {
// return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
//}
/// isMask_32 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (32 bit
/// version). Ex. isMask_32(0x0000FFFFU) == true.
static inline bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isMask_64 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (64 bit
/// version).
static inline bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isShiftedMask_32 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
static inline bool isShiftedMask_32(uint32_t Value) {
return isMask_32((Value - 1) | Value);
}
/// isShiftedMask_64 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (64 bit version.)
static inline bool isShiftedMask_64(uint64_t Value) {
return isMask_64((Value - 1) | Value);
}
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
static inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1));
}
/// CountLeadingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the most significant bit to the first one
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
/// Returns 32 if the word is zero.
static inline unsigned CountLeadingZeros_32(uint32_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clz(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 32;
#endif
Count = __builtin_clz(Value);
#else
unsigned Shift;
if (!Value) return 32;
Count = 0;
// bisection method for count leading zeros
for (Shift = 32 >> 1; Shift; Shift >>= 1) {
uint32_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
#endif
return Count;
}
/// CountLeadingOnes_32 - this function performs the operation of
/// counting the number of ones from the most significant bit to the first zero
/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
/// Returns 32 if the word is all ones.
static inline unsigned CountLeadingOnes_32(uint32_t Value) {
return CountLeadingZeros_32(~Value);
}
/// CountLeadingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the most significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
static inline unsigned CountLeadingZeros_64(uint64_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clzll(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 64;
#endif
Count = __builtin_clzll(Value);
#else
#ifndef _MSC_VER
unsigned Shift;
if (sizeof(long) == sizeof(int64_t))
{
if (!Value) return 64;
Count = 0;
// bisection method for count leading zeros
for (Shift = 64 >> 1; Shift; Shift >>= 1) {
uint64_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
}
else
#endif
{
// get hi portion
uint32_t Hi = Hi_32(Value);
// if some bits in hi portion
if (Hi) {
// leading zeros in hi portion plus all bits in lo portion
Count = CountLeadingZeros_32(Hi);
} else {
// get lo portion
uint32_t Lo = Lo_32(Value);
// same as 32 bit value
Count = CountLeadingZeros_32(Lo)+32;
}
}
#endif
return Count;
}
/// CountLeadingOnes_64 - This function performs the operation
/// of counting the number of ones from the most significant bit to the first
/// zero bit (64 bit edition.)
/// Returns 64 if the word is all ones.
static inline unsigned CountLeadingOnes_64(uint64_t Value) {
return CountLeadingZeros_64(~Value);
}
/// CountTrailingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
static inline unsigned CountTrailingZeros_32(uint32_t Value) {
#if __GNUC__ >= 4
return Value ? __builtin_ctz(Value) : 32;
#else
static const unsigned Mod37BitPosition[] = {
32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
5, 20, 8, 19, 18
};
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return Mod37BitPosition[(-Value & Value) % 37];
return Mod37BitPosition[((1 + ~Value) & Value) % 37];
#endif
}
/// CountTrailingOnes_32 - this function performs the operation of
/// counting the number of ones from the least significant bit to the first zero
/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
/// Returns 32 if the word is all ones.
static inline unsigned CountTrailingOnes_32(uint32_t Value) {
return CountTrailingZeros_32(~Value);
}
/// CountTrailingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the least significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
static inline unsigned CountTrailingZeros_64(uint64_t Value) {
#if __GNUC__ >= 4
return Value ? __builtin_ctzll(Value) : 64;
#else
static const unsigned Mod67Position[] = {
64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
7, 48, 35, 6, 34, 33, 0
};
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return Mod67Position[(-Value & Value) % 67];
return Mod67Position[((1 + ~Value) & Value) % 67];
#endif
}
/// CountTrailingOnes_64 - This function performs the operation
/// of counting the number of ones from the least significant bit to the first
/// zero bit (64 bit edition.)
/// Returns 64 if the word is all ones.
static inline unsigned CountTrailingOnes_64(uint64_t Value) {
return CountTrailingZeros_64(~Value);
}
/// CountPopulation_32 - this function counts the number of set bits in a value.
/// Ex. CountPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
static inline unsigned CountPopulation_32(uint32_t Value) {
#if __GNUC__ >= 4
return __builtin_popcount(Value);
#else
uint32_t v = Value - ((Value >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
#endif
}
/// CountPopulation_64 - this function counts the number of set bits in a value,
/// (64 bit edition.)
static inline unsigned CountPopulation_64(uint64_t Value) {
#if __GNUC__ >= 4
return __builtin_popcountll(Value);
#else
uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
return (uint64_t)((v * 0x0101010101010101ULL) >> 56);
#endif
}
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
static inline unsigned Log2_32(uint32_t Value) {
return 31 - CountLeadingZeros_32(Value);
}
/// Log2_64 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (64 bit edition.)
static inline unsigned Log2_64(uint64_t Value) {
return 63 - CountLeadingZeros_64(Value);
}
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
static inline unsigned Log2_32_Ceil(uint32_t Value) {
return 32-CountLeadingZeros_32(Value-1);
}
/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
/// value, 64 if the value is zero. (64 bit edition.)
static inline unsigned Log2_64_Ceil(uint64_t Value) {
return 64-CountLeadingZeros_64(Value-1);
}
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
/// values using Euclid's algorithm.
static inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
while (B) {
uint64_t T = B;
B = A % B;
A = T;
}
return A;
}
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
/// equivalent double.
static inline double BitsToDouble(uint64_t Bits) {
union {
uint64_t L;
double D;
} T;
T.L = Bits;
return T.D;
}
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
/// equivalent float.
static inline float BitsToFloat(uint32_t Bits) {
union {
uint32_t I;
float F;
} T;
T.I = Bits;
return T.F;
}
/// DoubleToBits - This function takes a double and returns the bit
/// equivalent 64-bit integer. Note that copying doubles around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
static inline uint64_t DoubleToBits(double Double) {
union {
uint64_t L;
double D;
} T;
T.D = Double;
return T.L;
}
/// FloatToBits - This function takes a float and returns the bit
/// equivalent 32-bit integer. Note that copying floats around
/// changes the bits of NaNs on some hosts, notably x86, so this
/// routine cannot be used if these bits are needed.
static inline uint32_t FloatToBits(float Float) {
union {
uint32_t I;
float F;
} T;
T.F = Float;
return T.I;
}
/// MinAlign - A and B are either alignments or offsets. Return the minimum
/// alignment that may be assumed after adding the two together.
static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
// The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return (A | B) & -(A | B);
return (A | B) & (1 + ~(A | B));
}
/// NextPowerOf2 - Returns the next power of two (in 64-bits)
/// that is strictly greater than A. Returns zero on overflow.
static inline uint64_t NextPowerOf2(uint64_t A) {
A |= (A >> 1);
A |= (A >> 2);
A |= (A >> 4);
A |= (A >> 8);
A |= (A >> 16);
A |= (A >> 32);
return A + 1;
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// Examples:
/// \code
/// RoundUpToAlignment(5, 8) = 8
/// RoundUpToAlignment(17, 8) = 24
/// RoundUpToAlignment(~0LL, 8) = 0
/// \endcode
static inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
return ((Value + Align - 1) / Align) * Align;
}
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align. \p Align must be
/// non-zero.
static inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
return RoundUpToAlignment(Value, Align) - Value;
}
/// abs64 - absolute value of a 64-bit int. Not all environments support
/// "abs" on whatever their name for the 64-bit int type is. The absolute
/// value of the largest negative number is undefined, as with "abs".
static inline int64_t abs64(int64_t x) {
return (x < 0) ? -x : x;
}
/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
/// Requires 0 < B <= 32.
static inline int32_t SignExtend32(uint32_t X, unsigned B) {
return (int32_t)(X << (32 - B)) >> (32 - B);
}
/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
/// Requires 0 < B <= 64.
static inline int64_t SignExtend64(uint64_t X, unsigned B) {
return (int64_t)(X << (64 - B)) >> (64 - B);
}
/// \brief Count number of 0's from the most significant bit to the least
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
static inline unsigned int countLeadingZeros(int x)
{
int i;
const unsigned bits = sizeof(x) * 8;
unsigned count = bits;
if (x < 0) {
return 0;
}
for (i = bits; --i; ) {
if (x == 0) break;
count--;
x >>= 1;
}
return count;
}
#endif
|