1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
// Capstone Java binding
// By Nguyen Anh Quynh & Dang Hoang Vu, 2013
import capstone.Capstone;
import static capstone.Capstone.CS_AC_READ;
import static capstone.Capstone.CS_AC_WRITE;
import capstone.Capstone.CsRegsAccess;
import capstone.X86;
import static capstone.X86_const.*;
public class TestX86 {
static byte[] hexString2Byte(String s) {
// from http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-java
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
+ Character.digit(s.charAt(i+1), 16));
}
return data;
}
static final String X86_CODE64 = "55488b05b8130000";
static final String X86_CODE16 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6";
static final String X86_CODE32 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6";
public static Capstone cs;
private static String hex(int i) {
return Integer.toString(i, 16);
}
private static String hex(long i) {
return Long.toString(i, 16);
}
private static String array2hex(byte[] arr) {
String ret = "";
for (int i=0 ;i<arr.length; i++)
ret += String.format("0x%02x ", arr[i]);
return ret;
}
public static void print_ins_detail(Capstone.CsInsn ins) {
System.out.printf("0x%x:\t%s\t%s\n", ins.address, ins.mnemonic, ins.opStr);
X86.OpInfo operands = (X86.OpInfo) ins.operands;
System.out.printf("\tPrefix: %s\n", array2hex(operands.prefix));
System.out.printf("\tOpcode: %s\n", array2hex(operands.opcode));
// print REX prefix (non-zero value is relevant for x86_64)
System.out.printf("\trex: 0x%x\n", operands.rex);
// print address size
System.out.printf("\taddr_size: %d\n", operands.addrSize);
// print modRM byte
System.out.printf("\tmodrm: 0x%x\n", operands.modrm);
// print modRM offset
if (operands.encoding.modrmOffset != 0) {
System.out.printf("\tmodrm offset: 0x%x\n", operands.encoding.modrmOffset);
}
// print displacement value
System.out.printf("\tdisp: 0x%x\n", operands.disp);
// print displacement offset
if (operands.encoding.dispOffset != 0) {
System.out.printf("\tdisp offset: 0x%x\n", operands.encoding.dispOffset);
}
//print displacement size
if (operands.encoding.dispSize != 0) {
System.out.printf("\tdisp size: 0x%x\n", operands.encoding.dispSize);
}
// SIB is not available in 16-bit mode
if ( (cs.mode & Capstone.CS_MODE_16) == 0) {
// print SIB byte
System.out.printf("\tsib: 0x%x\n", operands.sib);
if (operands.sib != 0)
System.out.printf("\t\tsib_base: %s\n\t\tsib_index: %s\n\t\tsib_scale: %d\n",
ins.regName(operands.sibBase), ins.regName(operands.sibIndex), operands.sibScale);
}
if (operands.xopCC != 0)
System.out.printf("\txop_cc: %u\n", operands.xopCC);
if (operands.sseCC != 0)
System.out.printf("\tsse_cc: %u\n", operands.sseCC);
if (operands.avxCC != 0)
System.out.printf("\tavx_cc: %u\n", operands.avxCC);
if (operands.avxSae)
System.out.printf("\tavx_sae: TRUE\n");
if (operands.avxRm != 0)
System.out.printf("\tavx_rm: %u\n", operands.avxRm);
int count = ins.opCount(X86_OP_IMM);
if (count > 0) {
System.out.printf("\timm_count: %d\n", count);
System.out.printf("\timm offset: 0x%x\n", operands.encoding.immOffset);
System.out.printf("\timm size: 0x%x\n", operands.encoding.immSize);
for (int i=0; i<count; i++) {
int index = ins.opIndex(X86_OP_IMM, i + 1);
System.out.printf("\t\timms[%d]: 0x%x\n", i+1, (operands.op[index].value.imm));
}
}
if (operands.op.length != 0) {
System.out.printf("\top_count: %d\n", operands.op.length);
for (int c=0; c<operands.op.length; c++) {
X86.Operand i = (X86.Operand) operands.op[c];
String imm = hex(i.value.imm);
if (i.type == X86_OP_REG)
System.out.printf("\t\toperands[%d].type: REG = %s\n", c, ins.regName(i.value.reg));
if (i.type == X86_OP_IMM)
System.out.printf("\t\toperands[%d].type: IMM = 0x%x\n", c, i.value.imm);
if (i.type == X86_OP_MEM) {
System.out.printf("\t\toperands[%d].type: MEM\n",c);
String segment = ins.regName(i.value.mem.segment);
String base = ins.regName(i.value.mem.base);
String index = ins.regName(i.value.mem.index);
if (segment != null)
System.out.printf("\t\t\toperands[%d].mem.segment: REG = %s\n", c, segment);
if (base != null)
System.out.printf("\t\t\toperands[%d].mem.base: REG = %s\n", c, base);
if (index != null)
System.out.printf("\t\t\toperands[%d].mem.index: REG = %s\n", c, index);
if (i.value.mem.scale != 1)
System.out.printf("\t\t\toperands[%d].mem.scale: %d\n", c, i.value.mem.scale);
if (i.value.mem.disp != 0)
System.out.printf("\t\t\toperands[%d].mem.disp: 0x%x\n", c, i.value.mem.disp);
}
// AVX broadcast type
if (i.avx_bcast != X86_AVX_BCAST_INVALID) {
System.out.printf("\t\toperands[%d].avx_bcast: %d\n", c, i.avx_bcast);
}
// AVX zero opmask {z}
if (i.avx_zero_opmask) {
System.out.printf("\t\toperands[%d].avx_zero_opmask: TRUE\n", c);
}
System.out.printf("\t\toperands[%d].size: %d\n", c, i.size);
switch(i.access) {
case CS_AC_READ:
System.out.printf("\t\toperands[%d].access: READ\n", c);
break;
case CS_AC_WRITE:
System.out.printf("\t\toperands[%d].access: WRITE\n", c);
break;
case CS_AC_READ | CS_AC_WRITE:
System.out.printf("\t\toperands[%d].access: READ | WRITE\n", c);
break;
}
}
// Print out all registers accessed by this instruction (either implicit or explicit)
CsRegsAccess regsAccess = ins.regsAccess();
if (regsAccess != null) {
short[] regsRead = regsAccess.regsRead;
short[] regsWrite = regsAccess.regsWrite;
if (regsRead.length > 0) {
System.out.printf("\tRegisters read:");
for (int i = 0; i < regsRead.length; i++) {
System.out.printf(" %s", ins.regName(regsRead[i]));
}
System.out.print("\n");
}
if (regsWrite.length > 0) {
System.out.printf("\tRegister modified:");
for (int i = 0; i < regsWrite.length; i++) {
System.out.printf(" %s", ins.regName(regsWrite[i]));
}
System.out.print("\n");
}
}
}
}
public static void main(String argv[]) {
final TestBasic.platform[] all_tests = {
new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_16, hexString2Byte(X86_CODE16), "X86 16bit (Intel syntax)"),
new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, Capstone.CS_OPT_SYNTAX_ATT, hexString2Byte(X86_CODE32), "X86 32 (AT&T syntax)"),
new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, hexString2Byte(X86_CODE32), "X86 32 (Intel syntax)"),
new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_64, hexString2Byte(X86_CODE64), "X86 64 (Intel syntax)"),
};
for (int i=0; i<all_tests.length; i++) {
TestBasic.platform test = all_tests[i];
System.out.println(new String(new char[16]).replace("\0", "*"));
System.out.println("Platform: " + test.comment);
System.out.println("Code: " + TestBasic.stringToHex(test.code));
System.out.println("Disasm:");
cs = new Capstone(test.arch, test.mode);
cs.setDetail(Capstone.CS_OPT_ON);
if (test.syntax != 0) {
cs.setSyntax(test.syntax);
}
Capstone.CsInsn[] all_ins = cs.disasm(test.code, 0x1000);
for (int j = 0; j < all_ins.length; j++) {
print_ins_detail(all_ins[j]);
System.out.println();
}
System.out.printf("0x%x:\n\n", all_ins[all_ins.length-1].address + all_ins[all_ins.length-1].size);
// Close when done
cs.close();
}
}
}
|