File: TestX86.java

package info (click to toggle)
rust-capstone-sys 0.17.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,524 kB
  • sloc: ansic: 70,376; cs: 18,890; pascal: 14,893; java: 14,778; ml: 13,672; python: 6,145; makefile: 1,172; sh: 532; cpp: 285
file content (227 lines) | stat: -rw-r--r-- 8,335 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// Capstone Java binding
// By Nguyen Anh Quynh & Dang Hoang Vu,  2013

import capstone.Capstone;
import static capstone.Capstone.CS_AC_READ;
import static capstone.Capstone.CS_AC_WRITE;
import capstone.Capstone.CsRegsAccess;
import capstone.X86;

import static capstone.X86_const.*;

public class TestX86 {

  static byte[] hexString2Byte(String s) {
    // from http://stackoverflow.com/questions/140131/convert-a-string-representation-of-a-hex-dump-to-a-byte-array-using-java
    int len = s.length();
    byte[] data = new byte[len / 2];
    for (int i = 0; i < len; i += 2) {
      data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
          + Character.digit(s.charAt(i+1), 16));
    }
    return data;
  }

  static final String X86_CODE64 = "55488b05b8130000";
  static final String X86_CODE16 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6";
  static final String X86_CODE32 = "8d4c320801d881c6341200000523010000368b849123010000418d8439896700008d8789670000b4c6";

  public static Capstone cs;

  private static String hex(int i) {
    return Integer.toString(i, 16);
  }

  private static String hex(long i) {
    return Long.toString(i, 16);
  }

  private static String array2hex(byte[] arr) {
    String ret = "";
    for (int i=0 ;i<arr.length; i++)
      ret += String.format("0x%02x ", arr[i]);
    return ret;
  }

  public static void print_ins_detail(Capstone.CsInsn ins) {
    System.out.printf("0x%x:\t%s\t%s\n", ins.address, ins.mnemonic, ins.opStr);

    X86.OpInfo operands = (X86.OpInfo) ins.operands;

    System.out.printf("\tPrefix: %s\n", array2hex(operands.prefix));

    System.out.printf("\tOpcode: %s\n", array2hex(operands.opcode));

    // print REX prefix (non-zero value is relevant for x86_64)
    System.out.printf("\trex: 0x%x\n", operands.rex);

    // print address size
    System.out.printf("\taddr_size: %d\n", operands.addrSize);

    // print modRM byte
    System.out.printf("\tmodrm: 0x%x\n", operands.modrm);

    // print modRM offset
    if (operands.encoding.modrmOffset != 0) {
      System.out.printf("\tmodrm offset: 0x%x\n", operands.encoding.modrmOffset);
    }

    // print displacement value
    System.out.printf("\tdisp: 0x%x\n", operands.disp);

    // print displacement offset
    if (operands.encoding.dispOffset != 0) {
      System.out.printf("\tdisp offset: 0x%x\n", operands.encoding.dispOffset);
    }

    //print displacement size
    if (operands.encoding.dispSize != 0) {
      System.out.printf("\tdisp size: 0x%x\n", operands.encoding.dispSize);
    }

    // SIB is not available in 16-bit mode
    if ( (cs.mode & Capstone.CS_MODE_16) == 0) {
      // print SIB byte
      System.out.printf("\tsib: 0x%x\n", operands.sib);
      if (operands.sib != 0)
        System.out.printf("\t\tsib_base: %s\n\t\tsib_index: %s\n\t\tsib_scale: %d\n",
          ins.regName(operands.sibBase), ins.regName(operands.sibIndex), operands.sibScale);
    }

    if (operands.xopCC != 0)
        System.out.printf("\txop_cc: %u\n", operands.xopCC);

    if (operands.sseCC != 0)
        System.out.printf("\tsse_cc: %u\n", operands.sseCC);

    if (operands.avxCC != 0)
        System.out.printf("\tavx_cc: %u\n", operands.avxCC);

    if (operands.avxSae)
        System.out.printf("\tavx_sae: TRUE\n");

    if (operands.avxRm != 0)
        System.out.printf("\tavx_rm: %u\n", operands.avxRm);

    int count = ins.opCount(X86_OP_IMM);
    if (count > 0) {
      System.out.printf("\timm_count: %d\n", count);
      System.out.printf("\timm offset: 0x%x\n", operands.encoding.immOffset);
      System.out.printf("\timm size: 0x%x\n", operands.encoding.immSize);
      for (int i=0; i<count; i++) {
        int index = ins.opIndex(X86_OP_IMM, i + 1);
        System.out.printf("\t\timms[%d]: 0x%x\n", i+1, (operands.op[index].value.imm));
      }
    }

    if (operands.op.length != 0) {
      System.out.printf("\top_count: %d\n", operands.op.length);
      for (int c=0; c<operands.op.length; c++) {
        X86.Operand i = (X86.Operand) operands.op[c];
        String imm = hex(i.value.imm);
        if (i.type == X86_OP_REG)
          System.out.printf("\t\toperands[%d].type: REG = %s\n", c, ins.regName(i.value.reg));
        if (i.type == X86_OP_IMM)
          System.out.printf("\t\toperands[%d].type: IMM = 0x%x\n", c, i.value.imm);
        if (i.type == X86_OP_MEM) {
          System.out.printf("\t\toperands[%d].type: MEM\n",c);
          String segment = ins.regName(i.value.mem.segment);
          String base = ins.regName(i.value.mem.base);
          String index = ins.regName(i.value.mem.index);
          if (segment != null)
            System.out.printf("\t\t\toperands[%d].mem.segment: REG = %s\n", c, segment);
          if (base != null)
            System.out.printf("\t\t\toperands[%d].mem.base: REG = %s\n", c, base);
          if (index != null)
            System.out.printf("\t\t\toperands[%d].mem.index: REG = %s\n", c, index);
          if (i.value.mem.scale != 1)
            System.out.printf("\t\t\toperands[%d].mem.scale: %d\n", c, i.value.mem.scale);
          if (i.value.mem.disp != 0)
            System.out.printf("\t\t\toperands[%d].mem.disp: 0x%x\n", c, i.value.mem.disp);
        }

        // AVX broadcast type
        if (i.avx_bcast != X86_AVX_BCAST_INVALID) {
          System.out.printf("\t\toperands[%d].avx_bcast: %d\n", c, i.avx_bcast);
        }

        // AVX zero opmask {z}
        if (i.avx_zero_opmask) {
          System.out.printf("\t\toperands[%d].avx_zero_opmask: TRUE\n", c);
        }

        System.out.printf("\t\toperands[%d].size: %d\n", c, i.size);
        switch(i.access) {
          case CS_AC_READ:
            System.out.printf("\t\toperands[%d].access: READ\n", c);
            break;
          case CS_AC_WRITE:
            System.out.printf("\t\toperands[%d].access: WRITE\n", c);
            break;
          case CS_AC_READ | CS_AC_WRITE:
            System.out.printf("\t\toperands[%d].access: READ | WRITE\n", c);
            break;
        }
      }

      // Print out all registers accessed by this instruction (either implicit or explicit)
      CsRegsAccess regsAccess = ins.regsAccess();
      if (regsAccess != null) {
        short[] regsRead = regsAccess.regsRead;
        short[] regsWrite = regsAccess.regsWrite;

        if (regsRead.length > 0) {
          System.out.printf("\tRegisters read:");
          for (int i = 0; i < regsRead.length; i++) {
            System.out.printf(" %s", ins.regName(regsRead[i]));
          }
          System.out.print("\n");
        }

        if (regsWrite.length > 0) {
          System.out.printf("\tRegister modified:");
          for (int i = 0; i < regsWrite.length; i++) {
            System.out.printf(" %s", ins.regName(regsWrite[i]));
          }
          System.out.print("\n");
        }
      }
    }
  }

  public static void main(String argv[]) {

    final TestBasic.platform[] all_tests = {
      new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_16, hexString2Byte(X86_CODE16), "X86 16bit (Intel syntax)"),
      new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, Capstone.CS_OPT_SYNTAX_ATT, hexString2Byte(X86_CODE32), "X86 32 (AT&T syntax)"),
      new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_32, hexString2Byte(X86_CODE32), "X86 32 (Intel syntax)"),
      new TestBasic.platform(Capstone.CS_ARCH_X86, Capstone.CS_MODE_64, hexString2Byte(X86_CODE64), "X86 64 (Intel syntax)"),
    };

    for (int i=0; i<all_tests.length; i++) {
      TestBasic.platform test = all_tests[i];
      System.out.println(new String(new char[16]).replace("\0", "*"));
      System.out.println("Platform: " + test.comment);
      System.out.println("Code: " + TestBasic.stringToHex(test.code));
      System.out.println("Disasm:");

      cs = new Capstone(test.arch, test.mode);
      cs.setDetail(Capstone.CS_OPT_ON);
      if (test.syntax != 0) {
        cs.setSyntax(test.syntax);
      }
      Capstone.CsInsn[] all_ins = cs.disasm(test.code, 0x1000);

      for (int j = 0; j < all_ins.length; j++) {
        print_ins_detail(all_ins[j]);
        System.out.println();
      }

      System.out.printf("0x%x:\n\n", all_ins[all_ins.length-1].address + all_ins[all_ins.length-1].size);

      // Close when done
      cs.close();
    }
  }

}