File: loom.rs

package info (click to toggle)
rust-concurrent-queue 2.5.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 248 kB
  • sloc: makefile: 2
file content (307 lines) | stat: -rw-r--r-- 7,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#![cfg(loom)]

use concurrent_queue::{ConcurrentQueue, ForcePushError, PopError, PushError};
use loom::sync::atomic::{AtomicUsize, Ordering};
use loom::sync::{Arc, Condvar, Mutex};
use loom::thread;

#[cfg(target_family = "wasm")]
use wasm_bindgen_test::wasm_bindgen_test as test;

/// A basic MPMC channel based on a ConcurrentQueue and loom primitives.
struct Channel<T> {
    /// The queue used to contain items.
    queue: ConcurrentQueue<T>,

    /// The number of senders.
    senders: AtomicUsize,

    /// The number of receivers.
    receivers: AtomicUsize,

    /// The event that is signaled when a new item is pushed.
    push_event: Event,

    /// The event that is signaled when a new item is popped.
    pop_event: Event,
}

/// The sending side of a channel.
struct Sender<T> {
    /// The channel.
    channel: Arc<Channel<T>>,
}

/// The receiving side of a channel.
struct Receiver<T> {
    /// The channel.
    channel: Arc<Channel<T>>,
}

/// Create a new pair of senders/receivers based on a queue.
fn pair<T>(queue: ConcurrentQueue<T>) -> (Sender<T>, Receiver<T>) {
    let channel = Arc::new(Channel {
        queue,
        senders: AtomicUsize::new(1),
        receivers: AtomicUsize::new(1),
        push_event: Event::new(),
        pop_event: Event::new(),
    });

    (
        Sender {
            channel: channel.clone(),
        },
        Receiver { channel },
    )
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Self {
        self.channel.senders.fetch_add(1, Ordering::SeqCst);
        Sender {
            channel: self.channel.clone(),
        }
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        if self.channel.senders.fetch_sub(1, Ordering::SeqCst) == 1 {
            // Close the channel and notify the receivers.
            self.channel.queue.close();
            self.channel.push_event.signal_all();
        }
    }
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Self {
        self.channel.receivers.fetch_add(1, Ordering::SeqCst);
        Receiver {
            channel: self.channel.clone(),
        }
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        if self.channel.receivers.fetch_sub(1, Ordering::SeqCst) == 1 {
            // Close the channel and notify the senders.
            self.channel.queue.close();
            self.channel.pop_event.signal_all();
        }
    }
}

impl<T> Sender<T> {
    /// Send a value.
    ///
    /// Returns an error with the value if the channel is closed.
    fn send(&self, mut value: T) -> Result<(), T> {
        loop {
            match self.channel.queue.push(value) {
                Ok(()) => {
                    // Notify a single receiver.
                    self.channel.push_event.signal();
                    return Ok(());
                }
                Err(PushError::Closed(val)) => return Err(val),
                Err(PushError::Full(val)) => {
                    // Wait for a receiver to pop an item.
                    value = val;
                    self.channel.pop_event.wait();
                }
            }
        }
    }

    /// Send a value forcefully.
    fn force_send(&self, value: T) -> Result<Option<T>, T> {
        match self.channel.queue.force_push(value) {
            Ok(bumped) => {
                self.channel.push_event.signal();
                Ok(bumped)
            }

            Err(ForcePushError(val)) => Err(val),
        }
    }
}

impl<T> Receiver<T> {
    /// Channel capacity.
    fn capacity(&self) -> Option<usize> {
        self.channel.queue.capacity()
    }

    /// Receive a value.
    ///
    /// Returns an error if the channel is closed.
    fn recv(&self) -> Result<T, ()> {
        loop {
            match self.channel.queue.pop() {
                Ok(value) => {
                    // Notify a single sender.
                    self.channel.pop_event.signal();
                    return Ok(value);
                }
                Err(PopError::Closed) => return Err(()),
                Err(PopError::Empty) => {
                    // Wait for a sender to push an item.
                    self.channel.push_event.wait();
                }
            }
        }
    }
}

/// An event that can be waited on and then signaled.
struct Event {
    /// The condition variable used to wait on the event.
    condvar: Condvar,

    /// The mutex used to protect the event.
    ///
    /// Inside is the event's state. The first bit is used to indicate if the
    /// notify_one method was called. The second bit is used to indicate if the
    /// notify_all method was called.
    mutex: Mutex<usize>,
}

impl Event {
    /// Create a new event.
    fn new() -> Self {
        Self {
            condvar: Condvar::new(),
            mutex: Mutex::new(0),
        }
    }

    /// Wait for the event to be signaled.
    fn wait(&self) {
        let mut state = self.mutex.lock().unwrap();

        loop {
            if *state & 0b11 != 0 {
                // The event was signaled.
                *state &= !0b01;
                return;
            }

            // Wait for the event to be signaled.
            state = self.condvar.wait(state).unwrap();
        }
    }

    /// Signal the event.
    fn signal(&self) {
        let mut state = self.mutex.lock().unwrap();
        *state |= 1;
        drop(state);

        self.condvar.notify_one();
    }

    /// Signal the event, but notify all waiters.
    fn signal_all(&self) {
        let mut state = self.mutex.lock().unwrap();
        *state |= 3;
        drop(state);

        self.condvar.notify_all();
    }
}

/// Wrapper to run tests on all three queues.
fn run_test<F: Fn(ConcurrentQueue<usize>, usize) + Send + Sync + Clone + 'static>(f: F) {
    // The length of a loom test seems to increase exponentially the higher this number is.
    const LIMIT: usize = 4;

    let fc = f.clone();
    loom::model(move || {
        fc(ConcurrentQueue::bounded(1), LIMIT);
    });

    let fc = f.clone();
    loom::model(move || {
        fc(ConcurrentQueue::bounded(LIMIT / 2), LIMIT);
    });

    loom::model(move || {
        f(ConcurrentQueue::unbounded(), LIMIT);
    });
}

#[test]
fn spsc() {
    run_test(|q, limit| {
        // Create a new pair of senders/receivers.
        let (tx, rx) = pair(q);

        // Push each onto a thread and run them.
        let handle = thread::spawn(move || {
            for i in 0..limit {
                if tx.send(i).is_err() {
                    break;
                }
            }
        });

        let mut recv_values = vec![];

        loop {
            match rx.recv() {
                Ok(value) => recv_values.push(value),
                Err(()) => break,
            }
        }

        // Values may not be in order.
        recv_values.sort_unstable();
        assert_eq!(recv_values, (0..limit).collect::<Vec<_>>());

        // Join the handle before we exit.
        handle.join().unwrap();
    });
}

#[test]
fn spsc_force() {
    run_test(|q, limit| {
        // Create a new pair of senders/receivers.
        let (tx, rx) = pair(q);

        // Push each onto a thread and run them.
        let handle = thread::spawn(move || {
            for i in 0..limit {
                if tx.force_send(i).is_err() {
                    break;
                }
            }
        });

        let mut recv_values = vec![];

        loop {
            match rx.recv() {
                Ok(value) => recv_values.push(value),
                Err(()) => break,
            }
        }

        // Values may not be in order.
        recv_values.sort_unstable();
        let cap = rx.capacity().unwrap_or(usize::MAX);
        for (left, right) in (0..limit)
            .rev()
            .take(cap)
            .zip(recv_values.into_iter().rev())
        {
            assert_eq!(left, right);
        }

        // Join the handle before we exit.
        handle.join().unwrap();
    });
}