1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#[cfg(test)]
mod tests {
use counter::Counter;
use rand::Rng;
#[test]
fn test_composite_add_sub() {
let mut counts = "able babble table babble rabble table able fable scrabble"
.split_whitespace()
.collect::<Counter<_>>();
// add or subtract an iterable of the same type
counts += "cain and abel fable table cable".split_whitespace();
// or add or subtract from another Counter of the same type
let other_counts = "scrabble cabbie fable babble"
.split_whitespace()
.collect::<Counter<_>>();
let _diff = counts - other_counts;
}
#[test]
fn test_most_common() {
let counter = "abbccc".chars().collect::<Counter<_>>();
let by_common = counter.most_common();
let expected = vec![('c', 3), ('b', 2), ('a', 1)];
assert!(by_common == expected);
}
#[test]
fn test_most_common_tiebreaker() {
let counter = "eaddbbccc".chars().collect::<Counter<_>>();
let by_common = counter.most_common_tiebreaker(|&a, &b| a.cmp(&b));
let expected = vec![('c', 3), ('b', 2), ('d', 2), ('a', 1), ('e', 1)];
assert!(by_common == expected);
}
#[test]
fn test_most_common_tiebreaker_reversed() {
let counter = "eaddbbccc".chars().collect::<Counter<_>>();
let by_common = counter.most_common_tiebreaker(|&a, &b| b.cmp(&a));
let expected = vec![('c', 3), ('d', 2), ('b', 2), ('e', 1), ('a', 1)];
assert!(by_common == expected);
}
// The main purpose of this test is to see that we can call `Counter::most_common_tiebreaker()`
// with a closure that is `FnMut` but not `Fn`.
#[test]
fn test_most_common_tiebreaker_fn_mut() {
let counter: Counter<_> = "abracadabra".chars().collect::<Counter<_>>();
// Count how many times the tiebreaker closure is called.
let mut num_ties = 0;
let sorted = counter.most_common_tiebreaker(|a, b| {
num_ties += 1;
a.cmp(b)
});
let expected = vec![('a', 5), ('b', 2), ('r', 2), ('c', 1), ('d', 1)];
assert_eq!(sorted, expected);
// We should have called the tiebreaker twice: once to resolve the tie between `'b'` and
// `'r'` and once to resolve the tie between `'c'` and `'d'`.
assert_eq!(num_ties, 2);
}
#[test]
fn test_most_common_ordered() {
let counter = "eaddbbccc".chars().collect::<Counter<_>>();
let by_common = counter.most_common_ordered();
let expected = vec![('c', 3), ('b', 2), ('d', 2), ('a', 1), ('e', 1)];
assert!(by_common == expected);
}
#[test]
fn test_k_most_common_ordered() {
let counter: Counter<_> = "abracadabra".chars().collect();
let all = counter.most_common_ordered();
for k in 0..=counter.len() {
let topk = counter.k_most_common_ordered(k);
assert_eq!(&topk, &all[..k]);
}
}
/// This test is fundamentally the same as `test_k_most_common_ordered`, but it operates on
/// a wider variety of data. In particular, it tests both longer, narrower, and wider
/// distributions of data than the other test does.
#[test]
fn test_k_most_common_ordered_heavy() {
let mut rng = rand::thread_rng();
for container_size in [5, 10, 25, 100, 256] {
for max_value_factor in [0.25, 0.5, 1.0, 1.25, 2.0, 10.0, 100.0] {
let max_value = ((container_size as f64) * max_value_factor) as u32;
let mut values = vec![0; container_size];
for value in values.iter_mut() {
*value = rng.gen_range(0..=max_value);
}
let counter: Counter<_> = values.into_iter().collect();
let all = counter.most_common_ordered();
for k in 0..=counter.len() {
let topk = counter.k_most_common_ordered(k);
assert_eq!(&topk, &all[..k]);
}
}
}
}
#[test]
fn test_total() {
let counter = "".chars().collect::<Counter<_>>();
let total: usize = counter.total();
assert_eq!(total, 0);
let counter = "eaddbbccc".chars().collect::<Counter<_>>();
let total: usize = counter.total();
assert_eq!(total, 9);
}
#[test]
fn test_add() {
let d = "abbccc".chars().collect::<Counter<_>>();
let e = "bccddd".chars().collect::<Counter<_>>();
let out = d + e;
let expected = "abbbcccccddd".chars().collect::<Counter<_>>();
assert!(out == expected);
}
#[test]
fn test_sub() {
let d = "abbccc".chars().collect::<Counter<_>>();
let e = "bccddd".chars().collect::<Counter<_>>();
let out = d - e;
let expected = "abc".chars().collect::<Counter<_>>();
assert!(out == expected);
}
#[test]
fn test_intersection() {
let d = "abbccc".chars().collect::<Counter<_>>();
let e = "bccddd".chars().collect::<Counter<_>>();
let out = d & e;
let expected = "bcc".chars().collect::<Counter<_>>();
assert!(out == expected);
}
#[test]
fn test_union() {
let d = "abbccc".chars().collect::<Counter<_>>();
let e = "bccddd".chars().collect::<Counter<_>>();
let out = d | e;
let expected = "abbcccddd".chars().collect::<Counter<_>>();
assert!(out == expected);
}
#[test]
fn test_delete_key_from_backing_map() {
let mut counter = "aa-bb-cc".chars().collect::<Counter<_>>();
counter.remove(&'-');
assert!(counter == "aabbcc".chars().collect::<Counter<_>>());
}
#[test]
fn test_superset_non_usize_count() {
let mut a: Counter<_, i8> = "abbcccc".chars().collect();
let mut b: Counter<_, i8> = "abb".chars().collect();
assert!(a.is_superset(&b));
// Negative values are possible, a is no longer a superset
a[&'e'] = -1;
assert!(!a.is_superset(&b));
// Adjust b to make a a superset again
b[&'e'] = -2;
assert!(a.is_superset(&b));
}
#[test]
fn test_subset_non_usize_count() {
let mut a: Counter<_, i8> = "abb".chars().collect();
let mut b: Counter<_, i8> = "abbcccc".chars().collect();
assert!(a.is_subset(&b));
// Negative values are possible; a is no longer a subset
b[&'e'] = -1;
assert!(!a.is_subset(&b));
// Adjust a to make it a subset again
a[&'e'] = -2;
assert!(a.is_subset(&b));
}
#[cfg(feature = "serde")]
#[test]
fn test_serialize_deserialize() {
let a = "abbccc".chars().collect::<Counter<_>>();
let serialized = serde_json::to_string(&a).unwrap();
let b: Counter<char> = serde_json::from_str(&serialized).unwrap();
assert!(a == b)
}
}
|