File: mvreg.rs

package info (click to toggle)
rust-crdts 7.2.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 656 kB
  • sloc: perl: 258; python: 148; makefile: 8; sh: 1
file content (304 lines) | stat: -rw-r--r-- 7,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use crdts::{mvreg::Op, *};

use quickcheck::TestResult;

#[derive(Debug, Clone)]
struct TestReg {
    reg: MVReg<u8, u8>,
    ops: Vec<Op<u8, u8>>,
}

#[test]
fn test_apply() {
    let mut reg = MVReg::new();
    let clock = VClock::from(Dot::new(2, 1));
    reg.apply(Op::Put {
        clock: clock.clone(),
        val: 71,
    });
    assert_eq!(reg.read().add_clock, clock);
    assert_eq!(reg.read().val, vec![71]);
}

#[test]
fn test_write_should_not_mutate_reg() {
    let reg = MVReg::new();
    let ctx = reg.read().derive_add_ctx("A");
    let op = reg.write(32, ctx);
    assert_eq!(reg, MVReg::new());

    let mut reg = reg;
    reg.apply(op);
    assert_eq!(reg.read().val, vec![32]);
    assert_eq!(reg.read().add_clock, VClock::from(Dot::new("A", 1)));
}

#[test]
fn test_concurrent_update_with_same_value_dont_collapse_on_merge() {
    // this is important to prevent because it breaks commutativity
    let mut r1 = MVReg::new();
    let mut r2 = MVReg::new();
    r1.apply(r1.write(23, r1.read().derive_add_ctx("A")));
    r2.apply(r2.write(23, r2.read().derive_add_ctx("B")));

    r1.merge(r2);

    assert_eq!(r1.read().val, vec![23, 23]);
    assert_eq!(
        r1.read().add_clock,
        vec![Dot::new("A", 1), Dot::new("B", 1)]
            .into_iter()
            .collect()
    );
}

#[test]
fn test_concurrent_update_with_same_value_dont_collapse_on_apply() {
    // this is important to prevent because it breaks commutativity
    let mut r1 = MVReg::new();
    let r2 = MVReg::new();

    r1.apply(r1.write(23, r1.read().derive_add_ctx("A")));
    r1.apply(r2.write(23, r2.read().derive_add_ctx("B")));

    assert_eq!(r1.read().val, vec![23, 23]);
    assert_eq!(
        r1.read().add_clock,
        vec![Dot::new("A", 1), Dot::new("B", 1)]
            .into_iter()
            .collect()
    );
}

#[test]
fn test_multi_val() {
    let mut r1 = MVReg::new();
    let mut r2 = MVReg::new();

    r1.apply(r1.write(32, r1.read().derive_add_ctx("A")));
    r2.apply(r2.write(82, r2.read().derive_add_ctx("B")));

    r1.merge(r2);
    assert!(r1.read().val == vec![32, 82] || r1.read().val == vec![82, 32]);
}

#[test]
fn test_op_commute_quickcheck1() {
    let mut reg1 = MVReg::new();
    let mut reg2 = MVReg::new();

    let op1 = Op::Put {
        clock: Dot::new("A", 1).into(),
        val: 1,
    };
    let op2 = Op::Put {
        clock: Dot::new("B", 1).into(),
        val: 2,
    };

    reg2.apply(op2.clone());
    reg2.apply(op1.clone());
    reg1.apply(op1);
    reg1.apply(op2);

    assert_eq!(reg1, reg2);
}

fn ops_are_not_compatible(opss: &[&Vec<(u8, u8)>]) -> bool {
    // We need to make sure that we never insert two different values with
    // the same actor version.
    for a_ops in opss.iter() {
        for b_ops in opss.iter().filter(|o| o != &a_ops) {
            let mut a_clock = VClock::new();
            let mut b_clock = VClock::new();
            for ((_, a_actor), (_, b_actor)) in a_ops.iter().zip(b_ops.iter()) {
                a_clock.apply(a_clock.inc(*a_actor));
                b_clock.apply(b_clock.inc(*b_actor));

                if b_clock.get(a_actor) == a_clock.get(a_actor) {
                    // this check is a bit broad as it's not a failure
                    // to insert the same value with the same actor version
                    // but for simplicity we reject those ops as well
                    return true;
                }
            }
        }
    }
    false
}

fn build_test_reg(prim_ops: Vec<(u8, u8)>) -> TestReg {
    let mut reg = MVReg::default();
    let mut ops = Vec::new();
    for (val, actor) in prim_ops {
        let ctx = reg.read().derive_add_ctx(actor);
        let op = reg.write(val, ctx);
        reg.apply(op.clone());
        ops.push(op);
    }
    TestReg { reg, ops }
}

quickcheck! {
    fn prop_set_with_ctx_from_read(r_ops: Vec<(u8, u8)>, a: u8) -> bool {
        let mut reg = build_test_reg(r_ops).reg;
        let write_ctx = reg.read().derive_add_ctx(a);
        reg.apply(reg.write(23, write_ctx));

        let next_read_ctx = reg.read();
        next_read_ctx.val == vec![23]
    }

    fn prop_merge_idempotent(r_ops: Vec<(u8, u8)>) -> bool {
        let mut r = build_test_reg(r_ops).reg;
        let r_snapshot = r.clone();

        r.merge(r_snapshot.clone());

        assert_eq!(r, r_snapshot);
        true
    }

    fn prop_merge_commutative(
        r1_ops: Vec<(u8, u8)>,
        r2_ops: Vec<(u8, u8)>
    ) -> TestResult {
        if ops_are_not_compatible(&[&r1_ops, &r2_ops]) {
            return TestResult::discard();
        }
        let r1 = build_test_reg(r1_ops);
        let r2 = build_test_reg(r2_ops);
        let mut r1 = r1.reg;
        let mut r2 = r2.reg;

        let r1_snapshot = r1.clone();
        r1.merge(r2.clone());
        r2.merge(r1_snapshot);

        assert_eq!(r1, r2);
        TestResult::from_bool(true)
    }

    fn prop_merge_associative(
        r1_ops: Vec<(u8, u8)>,
        r2_ops: Vec<(u8, u8)>,
        r3_ops: Vec<(u8, u8)>
    ) -> TestResult {
        if ops_are_not_compatible(&[&r1_ops, &r2_ops, &r3_ops]) {
            return TestResult::discard();
        }
        let mut r1 = build_test_reg(r1_ops).reg;
        let mut r2 = build_test_reg(r2_ops).reg;
        let r3 = build_test_reg(r3_ops).reg;
        let r1_snapshot = r1.clone();

        // r1 ^ r2
        r1.merge(r2.clone());

        // (r1 ^ r2) ^ r3
        r1.merge(r3.clone());

        // r2 ^ r3
        r2.merge(r3);

        // r1 ^ (r2 ^ r3)
        r2.merge(r1_snapshot);

        assert_eq!(r1, r2);
        TestResult::from_bool(true)
    }

    fn prop_reset_remove(r_ops: Vec<(u8, u8)>) -> bool {
        let mut r = build_test_reg(r_ops).reg;
        let r_snapshot = r.clone();

        // truncating with the empty clock should be a nop
        r.reset_remove(&VClock::new());
        assert_eq!(r, r_snapshot);

        // truncating with the merge of all val clocks should give us
        // an empty register
        let clock = r.read().add_clock;
        r.reset_remove(&clock);
        assert_eq!(r, MVReg::new());
        true
    }

    fn prop_op_idempotent(r_ops: Vec<(u8, u8)>) -> TestResult {
        let test = build_test_reg(r_ops);
        let mut r = test.reg;
        let r_snapshot = r.clone();
        for op in test.ops.into_iter() {
            r.apply(op);
        }

        assert_eq!(r, r_snapshot);
        TestResult::from_bool(true)
    }


    fn prop_op_commutative(
        o1_ops: Vec<(u8, u8)>,
        o2_ops: Vec<(u8, u8)>
    ) -> TestResult {
        if ops_are_not_compatible(&[&o1_ops, &o2_ops]) {
            return TestResult::discard();
        }
        let o1 = build_test_reg(o1_ops);
        let o2 = build_test_reg(o2_ops);

        let mut r1 = o1.reg;
        let mut r2 = o2.reg;

        for op in o2.ops.into_iter() {
            r1.apply(op);
        }

        for op in o1.ops.into_iter() {
            r2.apply(op);
        }

        assert_eq!(r1, r2);
        TestResult::from_bool(true)
    }


    fn prop_op_associative(
        o1_ops: Vec<(u8, u8)>,
        o2_ops: Vec<(u8, u8)>,
        o3_ops: Vec<(u8, u8)>
    ) -> TestResult {
        if ops_are_not_compatible(&[&o1_ops, &o2_ops, &o3_ops]) {
            return TestResult::discard();
        }
        let o1 = build_test_reg(o1_ops);
        let o2 = build_test_reg(o2_ops);
        let o3 = build_test_reg(o3_ops);
        let mut r1 = o1.reg;
        let mut r2 = o2.reg;


        // r1 <- r2
        for op in o2.ops.into_iter() {
            r1.apply(op);
        }

        // (r1 <- r2) <- r3
        for op in o3.ops.iter().cloned() {
            r1.apply(op);
        }

        // r2 <- r3
        for op in o3.ops.into_iter() {
            r2.apply(op);
        }

        // (r2 <- r3) <- r1
        for op in o1.ops.into_iter() {
            r2.apply(op);
        }

        assert_eq!(r1, r2);
        TestResult::from_bool(true)
    }
}