File: display.md

package info (click to toggle)
rust-derive-more-impl 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 612 kB
  • sloc: makefile: 2
file content (278 lines) | stat: -rw-r--r-- 8,328 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# What `#[derive(Display)]` generates

Deriving `Display` will generate a `Display` implementation, with a `fmt`
method that matches `self` and each of its variants. In the case of a struct or union,
only a single variant is available, and it is thus equivalent to a simple `let` statement.
In the case of an enum, each of its variants is matched.

For each matched variant, a `write!` expression will be generated with
the supplied format, or an automatically inferred one.

You specify the format on each variant by writing e.g. `#[display("my val: {}", some_val * 2)]`.
For enums, you can either specify it on each variant, or on the enum as a whole.

For variants that don't have a format specified, it will simply defer to the format of the
inner variable. If there is no such variable, or there is more than 1, an error is generated.




## The format of the format

You supply a format by attaching an attribute of the syntax: `#[display("...", args...)]`.
The format supplied is passed verbatim to `write!`.

The variables available in the arguments is `self` and each member of the
struct or enum variant, with members of tuple structs being named with a
leading underscore and their index, i.e. `_0`, `_1`, `_2`, etc. Due to
ownership/lifetime limitations the member variables are all references to the
fields, except when used directly in the format string. For most purposes this
detail doesn't matter, but it is quite important when using `Pointer`
formatting. If you don't use the `{field:p}` syntax, you have to dereference
once to get the address of the field itself, instead of the address of the
reference to the field:

```rust
# use derive_more::Display;
#
#[derive(Display)]
#[display("{field:p} {:p}", *field)]
struct RefInt<'a> {
    field: &'a i32,
}

let a = &123;
assert_eq!(format!("{}", RefInt{field: &a}), format!("{a:p} {:p}", a));
```

For enums you can also specify a shared format on the enum itself instead of
the variant. This format is used for each of the variants, and can be
customized per variant by including the special `{_variant}` placeholder in
this shared format, which is then replaced by the format string that's provided
on the variant.


### Other formatting traits

The syntax does not change, but the name of the attribute is the snake case version of the trait.
E.g. `Octal` -> `octal`, `Pointer` -> `pointer`, `UpperHex` -> `upper_hex`.

Note, that `Debug` has a slightly different API and semantics, described in its docs, and so,
requires a separate `debug` feature.


### Generic data types

When deriving `Display` (or other formatting trait) for a generic struct/enum, all generic type
arguments used during formatting are bound by respective formatting trait.
Bounds can only be inferred this way if a field is used directly in the interpolation.

E.g., for a structure `Foo` defined like this:
```rust
# use derive_more::Display;
#
# trait Trait { type Type; }
#
#[derive(Display)]
#[display("{a} {b} {c:?} {d:p}")]
struct Foo<'a, T1, T2: Trait, T3> {
    a: T1,
    b: <T2 as Trait>::Type,
    c: Vec<T3>,
    d: &'a T1,
}
```

The following where clauses would be generated:
* `T1: Display`
* `<T2 as Trait>::Type: Display`
* `Vec<T3>: Debug`
* `&'a T1: Pointer`


### Custom trait bounds

Sometimes you may want to specify additional trait bounds on your generic type parameters, so that they
could be used during formatting. This can be done with a `#[display(bound(...))]` attribute.

`#[display(bound(...))]` accepts code tokens in a format similar to the format
used in angle bracket list (or `where` clause predicates): `T: MyTrait, U: Trait1 + Trait2`.

`#[display("fmt", ...)]` arguments are parsed as an arbitrary Rust expression and passed to generated
`write!` as-is, it's impossible to meaningfully infer any kind of trait bounds for generic type parameters
used this way. That means that you'll **have to** explicitly specify all the required trait bounds of the
expression. Either in the struct/enum definition, or via `#[display(bound(...))]` attribute.

Explicitly specified bounds are added to the inferred ones. Note how no `V: Display` bound is necessary,
because it's inferred already.

```rust
# use derive_more::Display;
#
# trait MyTrait { fn my_function(&self) -> i32; }
#
#[derive(Display)]
#[display(bound(T: MyTrait, U: Display))]
#[display("{} {} {}", a.my_function(), b.to_string().len(), c)]
struct MyStruct<T, U, V> {
    a: T,
    b: U,
    c: V,
}
```


### Transparency

If the `#[display("...", args...)]` attribute is omitted, the implementation transparently delegates to the format
of the inner type, so all the additional [formatting parameters][1] do work as expected:
```rust
# use derive_more::Display;
#
#[derive(Display)]
struct MyInt(i32);

assert_eq!(format!("{:03}", MyInt(7)), "007");
```

If the `#[display("...", args...)]` attribute is specified and can be trivially substituted with a transparent
delegation call to the inner type, then additional [formatting parameters][1] will work too:
```rust
# use derive_more::Display;
#
#[derive(Display)]
#[display("{_0:o}")] // the same as calling `Octal::fmt()`
struct MyOctalInt(i32);

// so, additional formatting parameters do work transparently
assert_eq!(format!("{:03}", MyOctalInt(9)), "011");

#[derive(Display)]
#[display("{_0:02b}")]   // cannot be trivially substituted with `Binary::fmt()`,
struct MyBinaryInt(i32); // because of specified formatting parameters

// so, additional formatting parameters have no effect
assert_eq!(format!("{:07}", MyBinaryInt(2)), "10");
```

If, for some reason, transparency in trivial cases is not desired, it may be suppressed explicitly
either with the [`format_args!()`] macro usage:
```rust
# use derive_more::Display;
#
#[derive(Display)]
#[display("{}", format_args!("{_0:o}"))] // `format_args!()` obscures the inner type
struct MyOctalInt(i32);

// so, additional formatting parameters have no effect
assert_eq!(format!("{:07}", MyOctalInt(9)), "11");
```
Or by adding [formatting parameters][1] which cause no visual effects:
```rust
# use derive_more::Display;
#
#[derive(Display)]
#[display("{_0:^o}")] // `^` is centering, but in absence of additional width has no effect
struct MyOctalInt(i32);

// and so, additional formatting parameters have no effect
assert_eq!(format!("{:07}", MyOctalInt(9)), "11");
```




## Example usage

```rust
# use std::path::PathBuf;
#
# use derive_more::{Display, Octal, UpperHex};
#
#[derive(Display)]
struct MyInt(i32);

#[derive(Display)]
#[display("({x}, {y})")]
struct Point2D {
    x: i32,
    y: i32,
}

#[derive(Display)]
#[display("Enum E: {_variant}")]
enum E {
    Uint(u32),
    #[display("I am B {:b}", i)]
    Binary {
        i: i8,
    },
    #[display("I am C {}", _0.display())]
    Path(PathBuf),
}

#[derive(Display)]
#[display("Enum E2: {_0:?}")]
enum E2 {
    Uint(u32),
    String(&'static str, &'static str),
}

#[derive(Display)]
#[display("Hello there!")]
union U {
    i: u32,
}

#[derive(Octal)]
#[octal("7")]
struct S;

#[derive(UpperHex)]
#[upper_hex("UpperHex")]
struct UH;

#[derive(Display)]
struct Unit;

#[derive(Display)]
struct UnitStruct {}

#[derive(Display)]
#[display("{}", self.sign())]
struct PositiveOrNegative {
    x: i32,
}

impl PositiveOrNegative {
    fn sign(&self) -> &str {
        if self.x >= 0 {
            "Positive"
        } else {
            "Negative"
        }
    }
}

assert_eq!(MyInt(-2).to_string(), "-2");
assert_eq!(Point2D { x: 3, y: 4 }.to_string(), "(3, 4)");
assert_eq!(E::Uint(2).to_string(), "Enum E: 2");
assert_eq!(E::Binary { i: -2 }.to_string(), "Enum E: I am B 11111110");
assert_eq!(E::Path("abc".into()).to_string(), "Enum E: I am C abc");
assert_eq!(E2::Uint(2).to_string(), "Enum E2: 2");
assert_eq!(E2::String("shown", "ignored").to_string(), "Enum E2: \"shown\"");
assert_eq!(U { i: 2 }.to_string(), "Hello there!");
assert_eq!(format!("{:o}", S), "7");
assert_eq!(format!("{:X}", UH), "UpperHex");
assert_eq!(Unit.to_string(), "Unit");
assert_eq!(UnitStruct {}.to_string(), "UnitStruct");
assert_eq!(PositiveOrNegative { x: 1 }.to_string(), "Positive");
assert_eq!(PositiveOrNegative { x: -1 }.to_string(), "Negative");
```




[`format_args!()`]: https://doc.rust-lang.org/stable/std/macro.format_args.html

[1]: https://doc.rust-lang.org/stable/std/fmt/index.html#formatting-parameters