1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
use super::super::*;
#[test]
fn read() {
use std::io::Cursor;
const INPUT: Ipv6Header = Ipv6Header {
traffic_class: 1,
flow_label: 0x81806,
payload_length: 0x8021,
next_header: 30,
hop_limit: 40,
source: [1, 2, 3, 4, 5, 6, 7, 8,
9,10,11,12,13,14,15,16],
destination: [21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36]
};
//serialize
let mut buffer: Vec<u8> = Vec::with_capacity(20);
INPUT.write(&mut buffer).unwrap();
assert_eq!(40, buffer.len());
//deserialize
let mut cursor = Cursor::new(&buffer);
let result = IpHeader::read(&mut cursor).unwrap();
assert_eq!(40, cursor.position());
assert_eq!(result.0, IpHeader::Version6(INPUT, Default::default()));
assert_eq!(result.1, INPUT.next_header);
}
#[test]
fn read_write() {
use std::io::Cursor;
let input = Ipv6Header {
traffic_class: 1,
flow_label: 0x81806,
payload_length: 0x8021,
next_header: 30,
hop_limit: 40,
source: [1, 2, 3, 4, 5, 6, 7, 8,
9,10,11,12,13,14,15,16],
destination: [21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36]
};
//serialize
let mut buffer: Vec<u8> = Vec::with_capacity(20);
input.write(&mut buffer).unwrap();
//deserialize (with read)
{
let result = Ipv6Header::read(&mut Cursor::new(&buffer)).unwrap();
//check equivalence
assert_eq!(input, result);
}
//deserialize (with from_slice)
{
let result = Ipv6Header::from_slice(&buffer).unwrap();
assert_eq!(input, result.0);
assert_eq!(&buffer[buffer.len()..], result.1);
}
//deserialize (with read_from_slice)
#[allow(deprecated)]
{
let result = Ipv6Header::read_from_slice(&buffer).unwrap();
assert_eq!(input, result.0);
assert_eq!(&buffer[buffer.len()..], result.1);
}
}
#[test]
fn write_errors() {
use crate::WriteError::ValueError;
use crate::ValueError::*;
use crate::ErrorField::*;
fn base() -> Ipv6Header {
Ipv6Header {
traffic_class: 1,
flow_label: 0x0,
payload_length: 0x8021,
next_header: 30,
hop_limit: 40,
source: [1, 2, 3, 4, 5, 6, 7, 8,
9,10,11,12,13,14,15,16],
destination: [21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36]
}
}
fn test_write(input: &Ipv6Header) -> Result<(), WriteError> {
let mut buffer: Vec<u8> = Vec::with_capacity(20);
input.write(&mut buffer)
}
//flow label
assert_matches!(
test_write(&{
let mut value = base();
value.flow_label = 0x100000;
value
}),
Err(ValueError(U32TooLarge{value: 0x100000, max: 0xFFFFF, field: Ipv6FlowLabel})));
//io error (not enough space)
{
let header = base();
for len in 0..Ipv6Header::SERIALIZED_SIZE {
let mut writer = TestWriter::with_max_size(len);
assert_eq!(
writer.error_kind(),
header.write(&mut writer).unwrap_err().io_error().unwrap().kind()
);
}
}
}
#[test]
fn read_error() {
//wrong ip version
{
let buffer: [u8;20] = [0;20];
let result = Ipv6Header::read(&mut io::Cursor::new(&buffer));
assert_matches!(result, Err(ReadError::Ipv6UnexpectedVersion(0)))
}
//io error and unexpected end of slice
{
let buffer = {
let mut buffer: [u8;Ipv6Header::SERIALIZED_SIZE] = [0;Ipv6Header::SERIALIZED_SIZE];
buffer[0] = 0x60; //ip number is needed
buffer
};
for len in 0..Ipv6Header::SERIALIZED_SIZE {
// read
assert_matches!(
Ipv6Header::read(&mut io::Cursor::new(&buffer[0..len])),
Err(ReadError::IoError(_))
);
// read from slice
assert_matches!(
Ipv6Header::from_slice(&buffer[0..len]),
Err(ReadError::UnexpectedEndOfSlice(Ipv6Header::SERIALIZED_SIZE))
);
}
}
}
#[test]
fn header_len() {
let header : Ipv6Header = Default::default();
assert_eq!(Ipv6Header::SERIALIZED_SIZE, header.header_len());
}
#[test]
fn is_skippable_header_extension() {
use crate::ip_number::*;
for i in 0..0xffu8 {
let expected = match i {
IPV6_HOP_BY_HOP | IPV6_ROUTE | IPV6_FRAG | AUTH | IPV6_DEST_OPTIONS | MOBILITY | HIP | SHIM6 => true,
_ => false
};
assert_eq!(expected, Ipv6Header::is_skippable_header_extension(i));
}
}
#[test]
fn skip_extension() {
use crate::ip_number::*;
use std::io::Cursor;
{
let buffer: [u8; 8] = [0;8];
let mut cursor = Cursor::new(&buffer);
assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, ICMP), Ok(ICMP));
assert_eq!(0, cursor.position());
}
{
let buffer: [u8; 8] = [0;8];
let mut cursor = Cursor::new(&buffer);
assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, IPV6_HOP_BY_HOP), Ok(0));
assert_eq!(8, cursor.position());
}
{
let buffer: [u8; 8*3] = [
4,2,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
];
let mut cursor = Cursor::new(&buffer);
assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, IPV6_ROUTE), Ok(4));
assert_eq!(8*3, cursor.position());
}
{
//fragmentation header has a fixed size -> the 2 should be ignored
let buffer: [u8; 8*3] = [
4,2,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
];
let mut cursor = Cursor::new(&buffer);
assert_matches!(Ipv6Header::skip_header_extension(&mut cursor, IPV6_FRAG), Ok(4));
assert_eq!(8, cursor.position());
}
}
#[test]
fn skip_all_extensions() {
use crate::io::Cursor;
//extension header values
use crate::ip_number::*;
//based on RFC 8200 4.1. Extension Header Order
// & IANA https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml
const EXTENSION_IDS: [u8;9] = [
IPV6_HOP_BY_HOP,
IPV6_DEST_OPTIONS,
IPV6_ROUTE,
IPV6_FRAG,
AUTH,
IPV6_DEST_OPTIONS,
MOBILITY,
HIP,
SHIM6,
];
// note the following ids are extensions but are not skippable:
//
// - EncapsulatingSecurityPayload
// - ExperimentalAndTesting0
// - ExperimentalAndTesting0
//no & single skipping
{
let buffer: [u8; 8*4] = [
UDP,2,0,0, 0,0,0,0, //set next to udp
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
1,2,3,4, 5,6,7,8,
];
for i in 0..=u8::max_value() {
let mut cursor = Cursor::new(&buffer);
let reader_result = Ipv6Header::skip_all_header_extensions(&mut cursor, i);
let slice_result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, i).unwrap();
match EXTENSION_IDS.iter().find(|&&x| x == i) {
Some(_) => {
//ipv6 header extension -> expect skip
assert_matches!(reader_result, Ok(UDP));
assert_matches!(slice_result.0, UDP);
let len = if i == IPV6_FRAG {
//fragmentation header has a fixed size
8
} else if i == AUTH {
//authentification headers use 4-octets to describe the length
8 + 2*4
} else {
buffer.len() - 8
};
assert_eq!(len, cursor.position() as usize);
assert_eq!(&buffer[len..], slice_result.1);
},
None => {
//non ipv6 header expect no read movement and direct return
assert_matches!(reader_result, Ok(next) => assert_eq!(i, next));
assert_eq!(0, cursor.position());
assert_eq!(i, slice_result.0);
assert_eq!(&buffer, slice_result.1);
}
}
}
}
//creates an buffer filled with extension headers with the given ids
fn create_buffer(ids: &[u8]) -> Vec<u8> {
use crate::ip_number::*;
let mut prev: u8 = ids[0];
let mut result = Vec::with_capacity(ids.len()*8*4);
for (index, value) in ids[1..].iter().enumerate() {
let len: u8 = if prev == IPV6_FRAG {
0
} else {
(index % 3) as u8
};
//write first line
result.extend_from_slice(&[*value, len, 0, 0, 0, 0, 0, 0]);
//fill rest with dummy data
for _ in 0..len {
result.extend_from_slice(
if prev == AUTH {
// authentification headers interpret the length as in 4-octets
&[0;4]
} else {
// all other headers (excluding the fragmentation header) interpret the length as in 8-octets
&[0;8]
}
);
}
//cache prev
prev = *value;
}
//add some dummy data to the end (useful for checking that the returned slice are correct)
result.extend_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
result
}
//skip maximum number
{
let ids = {
let mut ids = Vec::with_capacity(IPV6_MAX_NUM_HEADER_EXTENSIONS);
while ids.len() < IPV6_MAX_NUM_HEADER_EXTENSIONS {
// fill with extension headers until filled
ids.extend_from_slice(&EXTENSION_IDS[..std::cmp::min(EXTENSION_IDS.len(), IPV6_MAX_NUM_HEADER_EXTENSIONS - ids.len())]);
}
ids.push(UDP);
ids
};
let buffer = create_buffer(&ids);
//reader
{
let mut cursor = Cursor::new(&buffer);
let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
assert_matches!(result, Ok(UDP));
assert_eq!(buffer.len() - 8, cursor.position() as usize);
}
//slice
{
let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, ids[0]).unwrap();
assert_eq!(result.0, UDP);
assert_eq!(result.1, &buffer[buffer.len() - 8 .. ]);
}
}
//trigger "too many" error
{
let ids = {
let mut ids = Vec::with_capacity(EXTENSION_IDS.len() + 5);
ids.extend_from_slice(&EXTENSION_IDS);
ids.push(EXTENSION_IDS[0]);
ids.push(EXTENSION_IDS[0]);
ids.push(EXTENSION_IDS[0]);
ids.push(EXTENSION_IDS[0]);
ids.push(UDP);
ids
};
let buffer = create_buffer(&ids);
//reader
{
let mut cursor = Cursor::new(&buffer);
let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
assert_matches!(result, Err(ReadError::Ipv6TooManyHeaderExtensions));
}
//slice
{
let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer, ids[0]);
assert_matches!(result, Err(ReadError::Ipv6TooManyHeaderExtensions));
}
}
//trigger missing unexpected eof
{
let ids = {
let mut ids = Vec::with_capacity(EXTENSION_IDS.len() + 1);
ids.extend_from_slice(&EXTENSION_IDS);
ids.push(UDP);
ids
};
let buffer = create_buffer(&ids);
// check for all offsets
for len in 0..buffer.len() - 8 { // minus 8 for the dummy data
//reader
{
let mut cursor = TestReader::new(&buffer[..len]);
let result = Ipv6Header::skip_all_header_extensions(&mut cursor, ids[0]);
assert_matches!(result, Err(ReadError::IoError(_)));
}
//slice
{
let result = Ipv6Header::skip_all_header_extensions_in_slice(&buffer[..len], ids[0]);
assert_matches!(result, Err(ReadError::UnexpectedEndOfSlice(_)));
}
}
}
}
#[test]
fn set_payload_lengt() {
let mut header = Ipv6Header {
traffic_class: 0,
flow_label: 0,
payload_length: 0,
next_header: 0,
hop_limit: 0,
source: [0;16],
destination: [0;16]
};
assert_matches!(header.set_payload_length(0), Ok(()));
assert_eq!(header.payload_length, 0);
const MAX: usize = std::u16::MAX as usize;
assert_matches!(header.set_payload_length(MAX), Ok(()));
assert_eq!(header.payload_length, MAX as u16);
const OVER_MAX: usize = MAX + 1;
assert_matches!(header.set_payload_length(OVER_MAX),
Err(ValueError::Ipv6PayloadLengthTooLarge(OVER_MAX)));
}
proptest! {
#[test]
fn from_slice(ref input in ipv6_any()) {
//serialize
let mut buffer: Vec<u8> = Vec::with_capacity(20);
input.write(&mut buffer).unwrap();
//check that a too small slice triggers an error
assert_matches!(Ipv6HeaderSlice::from_slice(&buffer[..buffer.len()-1]), Err(ReadError::UnexpectedEndOfSlice(Ipv6Header::SERIALIZED_SIZE)));
//check that all the values are read correctly
use std::net::Ipv6Addr;
let slice = Ipv6HeaderSlice::from_slice(&buffer).unwrap();
assert_eq!(slice.slice(), &buffer[..]);
assert_eq!(slice.version(), 6);
assert_eq!(slice.traffic_class(), input.traffic_class);
assert_eq!(slice.flow_label(), input.flow_label);
assert_eq!(slice.payload_length(), input.payload_length);
assert_eq!(slice.next_header(), input.next_header);
assert_eq!(slice.hop_limit(), input.hop_limit);
assert_eq!(slice.source(), input.source);
assert_eq!(slice.source_addr(), Ipv6Addr::from(input.source));
assert_eq!(slice.destination(), input.destination);
assert_eq!(slice.destination_addr(), Ipv6Addr::from(input.destination));
//test for derive
assert_eq!(slice.clone(), slice);
//check that the convertion back to a header struct results in the same struct
assert_eq!(&slice.to_header(), input);
}
}
#[test]
fn from_slice_bad_version() {
//write an ipv4 header and check that the bad version number is detected
let input = {
let mut input: Ipv4Header = Default::default();
//set the options to increase the size,
//otherwise an unexpected end of slice error is returned
input.set_options(
&[0;24]
).unwrap();
input
};
//serialize
let mut buffer: Vec<u8> = Vec::with_capacity(44);
input.write_raw(&mut buffer).unwrap();
//check that the unexpected version id is detected
use crate::ReadError::*;
assert_matches!(Ipv6HeaderSlice::from_slice(&buffer[..]), Err(Ipv6UnexpectedVersion(4)));
}
#[test]
fn dbg() {
let header: Ipv6Header = Default::default();
println!("{:?}", header);
let mut buffer: Vec<u8> = Vec::with_capacity(Ipv6Header::SERIALIZED_SIZE);
header.write(&mut buffer).unwrap();
let slice = Ipv6HeaderSlice::from_slice(&buffer[..]).unwrap();
println!("{:?}", slice);
}
#[test]
fn eq() {
let header: Ipv6Header = Default::default();
assert!(header.eq(&header.clone()));
assert!(false == header.ne(&header.clone()));
let mut buffer: Vec<u8> = Vec::with_capacity(Ipv6Header::SERIALIZED_SIZE);
header.write(&mut buffer).unwrap();
let slice = Ipv6HeaderSlice::from_slice(&buffer[..]).unwrap();
assert!(slice.eq(&slice.clone()));
assert!(false == slice.ne(&slice.clone()));
}
|