1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
#![cfg_attr(not(any(test, feature = "std")), no_std)]
#[cfg(feature = "alloc")]
extern crate alloc;
mod decode;
mod encode;
mod error;
#[cfg(feature = "serde")]
mod serde;
pub use crate::decode::{
hex_check, hex_check_fallback, hex_check_with_case, hex_decode, hex_decode_fallback,
hex_decode_unchecked,
};
pub use crate::encode::{
hex_encode, hex_encode_fallback, hex_encode_upper, hex_encode_upper_fallback, hex_string,
hex_string_upper,
};
pub use crate::error::Error;
#[cfg(feature = "serde")]
pub use crate::serde::{
deserialize, nopfx_ignorecase, nopfx_lowercase, nopfx_uppercase, serialize, withpfx_ignorecase,
withpfx_lowercase, withpfx_uppercase,
};
#[allow(deprecated)]
pub use crate::encode::hex_to;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub use crate::decode::{hex_check_sse, hex_check_sse_with_case};
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum Vectorization {
None = 0,
SSE41 = 1,
AVX2 = 2,
}
#[inline(always)]
pub(crate) fn vectorization_support() -> Vectorization {
#[cfg(all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "sse"
))]
{
use core::sync::atomic::{AtomicU8, Ordering};
static FLAGS: AtomicU8 = AtomicU8::new(u8::MAX);
// We're OK with relaxed, worst case scenario multiple threads checked the CPUID.
let current_flags = FLAGS.load(Ordering::Relaxed);
// u8::MAX means uninitialized.
if current_flags != u8::MAX {
return match current_flags {
0 => Vectorization::None,
1 => Vectorization::SSE41,
2 => Vectorization::AVX2,
_ => unreachable!(),
};
}
let val = vectorization_support_no_cache_x86();
FLAGS.store(val as u8, Ordering::Relaxed);
return val;
}
#[allow(unreachable_code)]
Vectorization::None
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cold]
fn vectorization_support_no_cache_x86() -> Vectorization {
#[cfg(target_arch = "x86")]
use core::arch::x86::__cpuid_count;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::__cpuid_count;
// SGX doesn't support CPUID,
// If there's no SSE there might not be CPUID and there's no SSE4.1/AVX2
if cfg!(target_env = "sgx") || !cfg!(target_feature = "sse") {
return Vectorization::None;
}
let proc_info_ecx = unsafe { __cpuid_count(1, 0) }.ecx;
let have_sse4 = (proc_info_ecx >> 19) & 1 == 1;
// If there's no SSE4 there can't be AVX2.
if !have_sse4 {
return Vectorization::None;
}
let have_xsave = (proc_info_ecx >> 26) & 1 == 1;
let have_osxsave = (proc_info_ecx >> 27) & 1 == 1;
let have_avx = (proc_info_ecx >> 27) & 1 == 1;
if have_xsave && have_osxsave && have_avx {
// # Safety: We checked that the processor supports xsave
if unsafe { avx2_support_no_cache_x86() } {
return Vectorization::AVX2;
}
}
Vectorization::SSE41
}
// We enable xsave so it can inline the _xgetbv call.
// # Safety: Safe as long it's only called when xsave is supported
#[target_feature(enable = "xsave")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cold]
unsafe fn avx2_support_no_cache_x86() -> bool {
#[cfg(target_arch = "x86")]
use core::arch::x86::{__cpuid_count, _xgetbv};
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::{__cpuid_count, _xgetbv};
let xcr0 = _xgetbv(0);
let os_avx_support = xcr0 & 6 == 6;
if os_avx_support {
let extended_features_ebx = __cpuid_count(7, 0).ebx;
let have_avx2 = (extended_features_ebx >> 5) & 1 == 1;
if have_avx2 {
return true;
}
}
false
}
#[cfg(test)]
mod tests {
use crate::decode::{hex_decode, hex_decode_with_case, CheckCase};
use crate::encode::{hex_encode, hex_string};
use crate::{hex_encode_upper, vectorization_support, Vectorization};
#[cfg(feature = "alloc")]
use crate::hex_string_upper;
use proptest::proptest;
#[cfg(not(feature = "alloc"))]
const CAPACITY: usize = 128;
#[test]
fn test_feature_detection() {
let vector_support = vectorization_support();
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
match vector_support {
Vectorization::AVX2 => assert!(is_x86_feature_detected!("avx2")),
Vectorization::SSE41 => assert!(is_x86_feature_detected!("sse4.1")),
Vectorization::None => assert!(
!cfg!(target_feature = "sse")
|| !is_x86_feature_detected!("avx2") && !is_x86_feature_detected!("sse4.1")
),
}
}
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
assert_eq!(vector_support, Vectorization::None);
}
fn _test_hex_encode(s: &String) {
let mut buffer = vec![0; s.as_bytes().len() * 2];
{
let encode = &*hex_encode(s.as_bytes(), &mut buffer).unwrap();
#[cfg(feature = "alloc")]
let hex_string = hex_string(s.as_bytes());
#[cfg(not(feature = "alloc"))]
let hex_string = hex_string::<CAPACITY>(s.as_bytes());
assert_eq!(encode, hex::encode(s));
assert_eq!(hex_string.as_str(), hex::encode(s));
}
#[cfg(feature = "alloc")]
{
let encode_upper = &*hex_encode_upper(s.as_bytes(), &mut buffer).unwrap();
#[cfg(feature = "alloc")]
let hex_string_upper = hex_string_upper(s.as_bytes());
#[cfg(not(feature = "alloc"))]
let hex_string_upper = hex_string_upper::<CAPACITY>(s.as_bytes());
assert_eq!(encode_upper, hex::encode_upper(s));
assert_eq!(hex_string_upper.as_str(), hex::encode_upper(s));
}
}
#[cfg(feature = "alloc")]
proptest! {
#[test]
fn test_hex_encode(ref s in ".*") {
_test_hex_encode(s);
}
}
#[cfg(not(feature = "alloc"))]
proptest! {
#[test]
fn test_hex_encode(ref s in ".{0,16}") {
_test_hex_encode(s);
}
}
fn _test_hex_decode(s: &String) {
let len = s.as_bytes().len();
{
let mut dst = Vec::with_capacity(len);
dst.resize(len, 0);
#[cfg(feature = "alloc")]
let hex_string = hex_string(s.as_bytes());
#[cfg(not(feature = "alloc"))]
let hex_string = hex_string::<CAPACITY>(s.as_bytes());
hex_decode(hex_string.as_bytes(), &mut dst).unwrap();
hex_decode_with_case(hex_string.as_bytes(), &mut dst, CheckCase::Lower).unwrap();
assert_eq!(&dst[..], s.as_bytes());
}
#[cfg(feature = "alloc")]
{
let mut dst = Vec::with_capacity(len);
dst.resize(len, 0);
#[cfg(feature = "alloc")]
let hex_string_upper = hex_string_upper(s.as_bytes());
#[cfg(not(feature = "alloc"))]
let hex_string_upper = hex_string_upper::<CAPACITY>(s.as_bytes());
hex_decode_with_case(hex_string_upper.as_bytes(), &mut dst, CheckCase::Upper).unwrap();
assert_eq!(&dst[..], s.as_bytes());
}
}
#[cfg(feature = "alloc")]
proptest! {
#[test]
fn test_hex_decode(ref s in ".+") {
_test_hex_decode(s);
}
}
#[cfg(not(feature = "alloc"))]
proptest! {
#[test]
fn test_hex_decode(ref s in ".{1,16}") {
_test_hex_decode(s);
}
}
fn _test_hex_decode_check(s: &String, ok: bool) {
let len = s.as_bytes().len();
let mut dst = Vec::with_capacity(len / 2);
dst.resize(len / 2, 0);
assert!(hex_decode(s.as_bytes(), &mut dst).is_ok() == ok);
}
proptest! {
#[test]
fn test_hex_decode_check(ref s in "([0-9a-fA-F][0-9a-fA-F])+") {
_test_hex_decode_check(s, true);
}
}
proptest! {
#[test]
fn test_hex_decode_check_odd(ref s in "[0-9a-fA-F]{11}") {
_test_hex_decode_check(s, false);
}
}
}
|