1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
//vim: tw=80
use futures::{FutureExt, stream};
#[cfg(feature = "tokio")]
use futures::future::ready;
use futures::stream::StreamExt;
use std::sync::Arc;
#[cfg(feature = "tokio")]
use std::rc::Rc;
use tokio::{self, sync::Barrier};
#[cfg(feature = "tokio")]
use tokio::runtime;
use tokio_test::task::spawn;
use tokio_test::{assert_pending, assert_ready};
use futures_locks::*;
// Create a MutexWeak and then upgrade it to Mutex
#[test]
fn mutex_weak_some() {
let mutex = Mutex::<u32>::new(0);
let mutex_weak = Mutex::downgrade(&mutex);
assert!(mutex_weak.upgrade().is_some())
}
// Create a MutexWeak and drop the mutex so that MutexWeak::upgrade return None
#[test]
fn mutex_weak_none() {
let mutex = Mutex::<u32>::new(0);
let mutex_weak = Mutex::downgrade(&mutex);
drop(mutex);
assert!(mutex_weak.upgrade().is_none())
}
// Compare Mutexes if it point to the same value
#[test]
fn mutex_eq_ptr_true() {
let mutex = Mutex::<u32>::new(0);
let mutex_other = mutex.clone();
assert!(Mutex::ptr_eq(&mutex, &mutex_other));
}
// Compare Mutexes if it point to the same value
#[test]
fn mutex_eq_ptr_false() {
let mutex = Mutex::<u32>::new(0);
let mutex_other = Mutex::<u32>::new(0);
assert!(!Mutex::ptr_eq(&mutex, &mutex_other));
}
// When a Mutex gets dropped after gaining ownership but before being polled, it
// should drain its channel and relinquish ownership if a message was found. If
// not, deadlocks may result.
#[tokio::test]
async fn drop_when_ready() {
let mutex = Mutex::<u32>::new(0);
let guard1 = mutex.lock().await;
let fut2 = mutex.lock();
drop(guard1); // ownership transfers to fut2
drop(fut2); // relinquish ownership
// The mutex should be available again
let _guard3 = mutex.lock().await;
}
// When a pending Mutex gets dropped after being polled() but before gaining
// ownership, ownership should pass on to the next waiter.
#[test]
fn drop_before_ready() {
let mutex = Mutex::<u32>::new(0);
let mut fut1 = spawn(mutex.lock());
let guard1 = assert_ready!(fut1.poll()); // fut1 immediately gets ownership
let mut fut2 = spawn(mutex.lock());
assert_pending!(fut2.poll()); // fut2 is blocked
let mut fut3 = spawn(mutex.lock());
assert_pending!(fut3.poll()); // fut3 is blocked, too
drop(fut2); // drop before gaining ownership
drop(guard1); // ownership transfers to fut3
drop(fut1);
assert!(fut3.is_woken());
assert_ready!(fut3.poll());
}
// Mutably dereference a uniquely owned Mutex
#[test]
fn get_mut() {
let mut mutex = Mutex::<u32>::new(42);
*mutex.get_mut().unwrap() += 1;
assert_eq!(*mutex.get_mut().unwrap(), 43);
}
// Cloned Mutexes cannot be deferenced
#[test]
fn get_mut_cloned() {
let mut mutex = Mutex::<u32>::new(42);
let _clone = mutex.clone();
assert!(mutex.get_mut().is_none());
}
// Acquire an uncontested Mutex. poll immediately returns Async::Ready
// #[test]
#[tokio::test]
async fn lock_uncontested() {
let mutex = Mutex::<u32>::new(0);
let guard = mutex.lock().await;
let result = *guard + 5;
drop(guard);
assert_eq!(result, 5);
}
// Pend on a Mutex held by another task in the same tokio Reactor. poll returns
// Async::NotReady. Later, it gets woken up without involving the OS.
#[test]
fn lock_contested() {
let mutex = Mutex::<u32>::new(0);
let mut fut0 = spawn(mutex.lock());
let guard0 = assert_ready!(fut0.poll()); // fut0 immediately gets ownership
let mut fut1 = spawn(mutex.lock());
assert_pending!(fut1.poll()); // fut1 is blocked
drop(guard0); // Ownership transfers to fut1
assert!(fut1.is_woken());
assert_ready!(fut1.poll());
}
// A single Mutex is contested by tasks in multiple threads
#[tokio::test]
async fn lock_multithreaded() {
let mutex = Mutex::<u32>::new(0);
let mtx_clone0 = mutex.clone();
let mtx_clone1 = mutex.clone();
let mtx_clone2 = mutex.clone();
let mtx_clone3 = mutex.clone();
let barrier = Arc::new(Barrier::new(5));
let b0 = barrier.clone();
let b1 = barrier.clone();
let b2 = barrier.clone();
let b3 = barrier.clone();
tokio::task::spawn(async move {
stream::iter(0..1000).for_each(move |_| {
mtx_clone0.lock().map(|mut guard| { *guard += 2 })
}).await;
b0.wait().await;
});
tokio::task::spawn(async move {
stream::iter(0..1000).for_each(move |_| {
mtx_clone1.lock().map(|mut guard| { *guard += 3 })
}).await;
b1.wait().await;
});
tokio::task::spawn(async move {
stream::iter(0..1000).for_each(move |_| {
mtx_clone2.lock().map(|mut guard| { *guard += 5 })
}).await;
b2.wait().await;
});
tokio::task::spawn(async move {
stream::iter(0..1000).for_each(move |_| {
mtx_clone3.lock().map(|mut guard| { *guard += 7 })
}).await;
b3.wait().await;
});
barrier.wait().await;
assert_eq!(mutex.try_unwrap().expect("try_unwrap"), 17_000);
}
// Mutexes should be acquired in the order that their Futures are waited upon.
#[tokio::test]
async fn lock_order() {
let mutex = Mutex::<Vec<u32>>::new(vec![]);
let fut2 = mutex.lock().map(|mut guard| guard.push(2));
let fut1 = mutex.lock().map(|mut guard| guard.push(1));
fut1.then(|_| fut2).await;
assert_eq!(mutex.try_unwrap().unwrap(), vec![1, 2]);
}
// Acquire an uncontested Mutex with try_lock
#[test]
fn try_lock_uncontested() {
let mutex = Mutex::<u32>::new(5);
let guard = mutex.try_lock().unwrap();
assert_eq!(5, *guard);
}
// Try and fail to acquire a contested Mutex with try_lock
#[test]
fn try_lock_contested() {
let mutex = Mutex::<u32>::new(0);
let _guard = mutex.try_lock().unwrap();
assert!(mutex.try_lock().is_err());
}
#[test]
fn try_unwrap_multiply_referenced() {
let mtx = Mutex::<u32>::new(0);
let _mtx2 = mtx.clone();
assert!(mtx.try_unwrap().is_err());
}
// Returning errors is simpler than in futures-locks 0.5: just return a Result
#[cfg(feature = "tokio")]
#[test]
fn with_err() {
let mtx = Mutex::<i32>::new(-5);
let rt = runtime::Builder::new_current_thread().build().unwrap();
let r = rt.block_on(async {
mtx.with(|guard| {
if *guard > 0 {
ready(Ok(*guard))
} else {
ready(Err("Whoops!"))
}
}).await
});
assert_eq!(r, Err("Whoops!"));
}
#[cfg(feature = "tokio")]
#[test]
fn with_ok() {
let mtx = Mutex::<i32>::new(5);
let rt = runtime::Builder::new_current_thread().build().unwrap();
let r = rt.block_on(async {
mtx.with(|guard| {
ready(*guard)
}).await
});
assert_eq!(r, 5);
}
// Mutex::with should work with multithreaded Runtimes as well as
// single-threaded Runtimes.
// https://github.com/asomers/futures-locks/issues/5
#[cfg(feature = "tokio")]
#[test]
fn with_threadpool() {
let mtx = Mutex::<i32>::new(5);
let rt = runtime::Builder::new_multi_thread().build().unwrap();
let r = rt.block_on(async {
mtx.with(|guard| {
ready(*guard)
}).await
});
assert_eq!(r, 5);
}
#[cfg(feature = "tokio")]
#[test]
fn with_local_ok() {
// Note: Rc is not Send
let mtx = Mutex::<Rc<i32>>::new(Rc::new(5));
let rt = runtime::Builder::new_current_thread().build().unwrap();
let r = rt.block_on(async {
mtx.with_local(|guard| {
ready(**guard)
}).await
});
assert_eq!(r, 5);
}
|