1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#![cfg(feature="executor")]
use futures::channel::oneshot;
use futures::executor::{block_on, LocalPool};
use futures::future::{self, FutureExt, LocalFutureObj, TryFutureExt};
use futures::task::LocalSpawn;
use std::cell::{Cell, RefCell};
use std::panic::AssertUnwindSafe;
use std::rc::Rc;
use std::task::Poll;
use std::thread;
struct CountClone(Rc<Cell<i32>>);
impl Clone for CountClone {
fn clone(&self) -> Self {
self.0.set(self.0.get() + 1);
Self(self.0.clone())
}
}
fn send_shared_oneshot_and_wait_on_multiple_threads(threads_number: u32) {
let (tx, rx) = oneshot::channel::<i32>();
let f = rx.shared();
let join_handles = (0..threads_number)
.map(|_| {
let cloned_future = f.clone();
thread::spawn(move || {
assert_eq!(block_on(cloned_future).unwrap(), 6);
})
})
.collect::<Vec<_>>();
tx.send(6).unwrap();
assert_eq!(block_on(f).unwrap(), 6);
for join_handle in join_handles {
join_handle.join().unwrap();
}
}
#[test]
fn one_thread() {
send_shared_oneshot_and_wait_on_multiple_threads(1);
}
#[test]
fn two_threads() {
send_shared_oneshot_and_wait_on_multiple_threads(2);
}
#[test]
fn many_threads() {
send_shared_oneshot_and_wait_on_multiple_threads(1000);
}
#[test]
fn drop_on_one_task_ok() {
let (tx, rx) = oneshot::channel::<u32>();
let f1 = rx.shared();
let f2 = f1.clone();
let (tx2, rx2) = oneshot::channel::<u32>();
let t1 = thread::spawn(|| {
let f = future::try_select(f1.map_err(|_| ()), rx2.map_err(|_| ()));
drop(block_on(f));
});
let (tx3, rx3) = oneshot::channel::<u32>();
let t2 = thread::spawn(|| {
let _ = block_on(f2.map_ok(|x| tx3.send(x).unwrap()).map_err(|_| ()));
});
tx2.send(11).unwrap(); // cancel `f1`
t1.join().unwrap();
tx.send(42).unwrap(); // Should cause `f2` and then `rx3` to get resolved.
let result = block_on(rx3).unwrap();
assert_eq!(result, 42);
t2.join().unwrap();
}
#[test]
fn drop_in_poll() {
let slot1 = Rc::new(RefCell::new(None));
let slot2 = slot1.clone();
let future1 = future::lazy(move |_| {
slot2.replace(None); // Drop future
1
})
.shared();
let future2 = LocalFutureObj::new(Box::new(future1.clone()));
slot1.replace(Some(future2));
assert_eq!(block_on(future1), 1);
}
#[test]
fn peek() {
let mut local_pool = LocalPool::new();
let spawn = &mut local_pool.spawner();
let (tx0, rx0) = oneshot::channel::<i32>();
let f1 = rx0.shared();
let f2 = f1.clone();
// Repeated calls on the original or clone do not change the outcome.
for _ in 0..2 {
assert!(f1.peek().is_none());
assert!(f2.peek().is_none());
}
// Completing the underlying future has no effect, because the value has not been `poll`ed in.
tx0.send(42).unwrap();
for _ in 0..2 {
assert!(f1.peek().is_none());
assert!(f2.peek().is_none());
}
// Once the Shared has been polled, the value is peekable on the clone.
spawn.spawn_local_obj(LocalFutureObj::new(Box::new(f1.map(|_| ())))).unwrap();
local_pool.run();
for _ in 0..2 {
assert_eq!(*f2.peek().unwrap(), Ok(42));
}
}
#[test]
fn downgrade() {
let (tx, rx) = oneshot::channel::<i32>();
let shared = rx.shared();
// Since there are outstanding `Shared`s, we can get a `WeakShared`.
let weak = shared.downgrade().unwrap();
// It should upgrade fine right now.
let mut shared2 = weak.upgrade().unwrap();
tx.send(42).unwrap();
assert_eq!(block_on(shared).unwrap(), 42);
// We should still be able to get a new `WeakShared` and upgrade it
// because `shared2` is outstanding.
assert!(shared2.downgrade().is_some());
assert!(weak.upgrade().is_some());
assert_eq!(block_on(&mut shared2).unwrap(), 42);
// Now that all `Shared`s have been exhausted, we should not be able
// to get a new `WeakShared` or upgrade an existing one.
assert!(weak.upgrade().is_none());
assert!(shared2.downgrade().is_none());
}
#[test]
fn ptr_eq() {
use future::FusedFuture;
use std::collections::hash_map::DefaultHasher;
use std::hash::Hasher;
let (tx, rx) = oneshot::channel::<i32>();
let shared = rx.shared();
let mut shared2 = shared.clone();
let mut hasher = DefaultHasher::new();
let mut hasher2 = DefaultHasher::new();
// Because these two futures share the same underlying future,
// `ptr_eq` should return true.
assert!(shared.ptr_eq(&shared2));
// Equivalence relations are symmetric
assert!(shared2.ptr_eq(&shared));
// If `ptr_eq` returns true, they should hash to the same value.
shared.ptr_hash(&mut hasher);
shared2.ptr_hash(&mut hasher2);
assert_eq!(hasher.finish(), hasher2.finish());
tx.send(42).unwrap();
assert_eq!(block_on(&mut shared2).unwrap(), 42);
// Now that `shared2` has completed, `ptr_eq` should return false.
assert!(shared2.is_terminated());
assert!(!shared.ptr_eq(&shared2));
// `ptr_eq` should continue to work for the other `Shared`.
let shared3 = shared.clone();
let mut hasher3 = DefaultHasher::new();
assert!(shared.ptr_eq(&shared3));
shared3.ptr_hash(&mut hasher3);
assert_eq!(hasher.finish(), hasher3.finish());
let (_tx, rx) = oneshot::channel::<i32>();
let shared4 = rx.shared();
// And `ptr_eq` should return false for two futures that don't share
// the underlying future.
assert!(!shared.ptr_eq(&shared4));
}
#[test]
fn dont_clone_in_single_owner_shared_future() {
let counter = CountClone(Rc::new(Cell::new(0)));
let (tx, rx) = oneshot::channel();
let rx = rx.shared();
tx.send(counter).ok().unwrap();
assert_eq!(block_on(rx).unwrap().0.get(), 0);
}
#[test]
fn dont_do_unnecessary_clones_on_output() {
let counter = CountClone(Rc::new(Cell::new(0)));
let (tx, rx) = oneshot::channel();
let rx = rx.shared();
tx.send(counter).ok().unwrap();
assert_eq!(block_on(rx.clone()).unwrap().0.get(), 1);
assert_eq!(block_on(rx.clone()).unwrap().0.get(), 2);
assert_eq!(block_on(rx).unwrap().0.get(), 2);
}
#[test]
fn shared_future_that_wakes_itself_until_pending_is_returned() {
let proceed = Cell::new(false);
let fut = futures::future::poll_fn(|cx| {
if proceed.get() {
Poll::Ready(())
} else {
cx.waker().wake_by_ref();
Poll::Pending
}
})
.shared();
// The join future can only complete if the second future gets a chance to run after the first
// has returned pending
assert_eq!(block_on(futures::future::join(fut, async { proceed.set(true) })), ((), ()));
}
#[test]
#[should_panic(expected = "inner future panicked during poll")]
fn panic_while_poll() {
let fut = futures::future::poll_fn::<i8, _>(|_cx| panic!("test")).shared();
let fut_captured = fut.clone();
std::panic::catch_unwind(AssertUnwindSafe(|| {
block_on(fut_captured);
}))
.unwrap_err();
block_on(fut);
}
#[test]
#[should_panic(expected = "test_marker")]
fn poll_while_panic() {
struct S;
impl Drop for S {
fn drop(&mut self) {
let fut = futures::future::ready(1).shared();
assert_eq!(block_on(fut.clone()), 1);
assert_eq!(block_on(fut), 1);
}
}
let _s = S {};
panic!("test_marker");
}
|