1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#if !defined(MI_IN_ALLOC_C)
#error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)"
// add includes help an IDE
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/prim.h" // _mi_prim_thread_id()
#endif
// forward declarations
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block);
static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block);
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block);
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block);
// ------------------------------------------------------
// Free
// ------------------------------------------------------
// forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static mi_decl_noinline void mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block);
// regular free of a (thread local) block pointer
// fast path written carefully to prevent spilling on the stack
static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool track_stats, bool check_full)
{
// checks
if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block);
if (track_stats) { mi_stat_free(page, block); }
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN && !MI_GUARDED
if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
}
#endif
if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned
// actual free: push on the local free list
mi_block_set_next(page, block, page->local_free);
page->local_free = block;
if mi_unlikely(--page->used == 0) {
_mi_page_retire(page);
}
else if mi_unlikely(check_full && mi_page_is_in_full(page)) {
_mi_page_unfull(page);
}
}
// Adjust a block that was allocated aligned, to the actual start of the block in the page.
// note: this can be called from `mi_free_generic_mt` where a non-owning thread accesses the
// `page_start` and `block_size` fields; however these are constant and the page won't be
// deallocated (as the block we are freeing keeps it alive) and thus safe to read concurrently.
mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p) {
mi_assert_internal(page!=NULL && p!=NULL);
size_t diff = (uint8_t*)p - page->page_start;
size_t adjust;
if mi_likely(page->block_size_shift != 0) {
adjust = diff & (((size_t)1 << page->block_size_shift) - 1);
}
else {
adjust = diff % mi_page_block_size(page);
}
return (mi_block_t*)((uintptr_t)p - adjust);
}
// forward declaration for a MI_GUARDED build
#if MI_GUARDED
static void mi_block_unguard(mi_page_t* page, mi_block_t* block, void* p); // forward declaration
static inline void mi_block_check_unguard(mi_page_t* page, mi_block_t* block, void* p) {
if (mi_block_ptr_is_guarded(block, p)) { mi_block_unguard(page, block, p); }
}
#else
static inline void mi_block_check_unguard(mi_page_t* page, mi_block_t* block, void* p) {
MI_UNUSED(page); MI_UNUSED(block); MI_UNUSED(p);
}
#endif
// free a local pointer (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
MI_UNUSED(segment);
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p);
mi_block_check_unguard(page, block, p);
mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */);
}
// free a pointer owned by another thread (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865)
mi_block_check_unguard(page, block, p);
mi_free_block_mt(page, segment, block);
}
// generic free (for runtime integration)
void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
if (is_local) mi_free_generic_local(page,segment,p);
else mi_free_generic_mt(page,segment,p);
}
// Get the segment data belonging to a pointer
// This is just a single `and` in release mode but does further checks in debug mode
// (and secure mode) to see if this was a valid pointer.
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
{
MI_UNUSED(msg);
#if (MI_DEBUG>0)
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0 && !mi_option_is_enabled(mi_option_guarded_precise)) {
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL;
}
#endif
mi_segment_t* const segment = _mi_ptr_segment(p);
if mi_unlikely(segment==NULL) return segment;
#if (MI_DEBUG>0)
if mi_unlikely(!mi_is_in_heap_region(p)) {
#if (MI_INTPTR_SIZE == 8 && defined(__linux__))
if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
#else
{
#endif
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
}
}
}
#endif
#if (MI_DEBUG>0 || MI_SECURE>=4)
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
return NULL;
}
#endif
return segment;
}
// Free a block
// Fast path written carefully to prevent register spilling on the stack
void mi_free(void* p) mi_attr_noexcept
{
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
if mi_unlikely(segment==NULL) return;
const bool is_local = (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(is_local) { // thread-local free?
if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
// thread-local, aligned, and not a full page
mi_block_t* const block = (mi_block_t*)p;
mi_free_block_local(page, block, true /* track stats */, false /* no need to check if the page is full */);
}
else {
// page is full or contains (inner) aligned blocks; use generic path
mi_free_generic_local(page, segment, p);
}
}
else {
// not thread-local; use generic path
mi_free_generic_mt(page, segment, p);
}
}
// return true if successful
bool _mi_free_delayed_block(mi_block_t* block) {
// get segment and page
mi_assert_internal(block!=NULL);
const mi_segment_t* const segment = _mi_ptr_segment(block);
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(_mi_thread_id() == segment->thread_id);
mi_page_t* const page = _mi_segment_page_of(segment, block);
// Clear the no-delayed flag so delayed freeing is used again for this page.
// This must be done before collecting the free lists on this page -- otherwise
// some blocks may end up in the page `thread_free` list with no blocks in the
// heap `thread_delayed_free` list which may cause the page to be never freed!
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
return false;
}
// collect all other non-local frees (move from `thread_free` to `free`) to ensure up-to-date `used` count
_mi_page_free_collect(page, false);
// and free the block (possibly freeing the page as well since `used` is updated)
mi_free_block_local(page, block, false /* stats have already been adjusted */, true /* check for a full page */);
return true;
}
// ------------------------------------------------------
// Multi-threaded Free (`_mt`)
// ------------------------------------------------------
// Push a block that is owned by another thread on its page-local thread free
// list or it's heap delayed free list. Such blocks are later collected by
// the owning thread in `_mi_free_delayed_block`.
static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block )
{
// Try to put the block on either the page-local thread free list,
// or the heap delayed free list (if this is the first non-local free in that page)
mi_thread_free_t tfreex;
bool use_delayed;
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
if mi_unlikely(use_delayed) {
// unlikely: this only happens on the first concurrent free in a page that is in the full list
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
}
else {
// usual: directly add to page thread_free list
mi_block_set_next(page, block, mi_tf_block(tfree));
tfreex = mi_tf_set_block(tfree,block);
}
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
// If this was the first non-local free, we need to push it on the heap delayed free list instead
if mi_unlikely(use_delayed) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
mi_assert_internal(heap != NULL);
if (heap != NULL) {
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
do {
mi_block_set_nextx(heap,block,dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
}
// and reset the MI_DELAYED_FREEING flag
tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
tfreex = tfree;
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
}
}
// Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block)
{
// first see if the segment was abandoned and if we can reclaim it into our thread
if (_mi_option_get_fast(mi_option_abandoned_reclaim_on_free) != 0 &&
#if MI_HUGE_PAGE_ABANDON
segment->page_kind != MI_PAGE_HUGE &&
#endif
mi_atomic_load_relaxed(&segment->thread_id) == 0 && // segment is abandoned?
mi_prim_get_default_heap() != (mi_heap_t*)&_mi_heap_empty) // and we did not already exit this thread (without this check, a fresh heap will be initalized (issue #944))
{
// the segment is abandoned, try to reclaim it into our heap
if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) {
mi_assert_internal(_mi_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_assert_internal(mi_heap_get_default()->tld->segments.subproc == segment->subproc);
mi_free(block); // recursively free as now it will be a local free in our heap
return;
}
}
// The padding check may access the non-thread-owned page for the key values.
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
mi_check_padding(page, block);
// adjust stats (after padding check and potentially recursive `mi_free` above)
mi_stat_free(page, block); // stat_free may access the padding
mi_track_free_size(block, mi_page_usable_size_of(page,block));
// for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
_mi_padding_shrink(page, block, sizeof(mi_block_t));
if (segment->kind == MI_SEGMENT_HUGE) {
#if MI_HUGE_PAGE_ABANDON
// huge page segments are always abandoned and can be freed immediately
_mi_segment_huge_page_free(segment, page, block);
return;
#else
// huge pages are special as they occupy the entire segment
// as these are large we reset the memory occupied by the page so it is available to other threads
// (as the owning thread needs to actually free the memory later).
_mi_segment_huge_page_reset(segment, page, block);
#endif
}
else {
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
#endif
}
// and finally free the actual block by pushing it on the owning heap
// thread_delayed free list (or heap delayed free list)
mi_free_block_delayed_mt(page,block);
}
// ------------------------------------------------------
// Usable size
// ------------------------------------------------------
// Bytes available in a block
static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_page_t* page, const void* p) mi_attr_noexcept {
const mi_block_t* block = _mi_page_ptr_unalign(page, p);
const size_t size = mi_page_usable_size_of(page, block);
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
const size_t aligned_size = (size - adjust);
#if MI_GUARDED
if (mi_block_ptr_is_guarded(block, p)) {
return aligned_size - _mi_os_page_size();
}
#endif
return aligned_size;
}
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
if mi_unlikely(segment==NULL) return 0;
const mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(!mi_page_has_aligned(page)) {
const mi_block_t* block = (const mi_block_t*)p;
return mi_page_usable_size_of(page, block);
}
else {
// split out to separate routine for improved code generation
return mi_page_usable_aligned_size_of(page, p);
}
}
mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
return _mi_usable_size(p, "mi_usable_size");
}
// ------------------------------------------------------
// Free variants
// ------------------------------------------------------
void mi_free_size(void* p, size_t size) mi_attr_noexcept {
MI_UNUSED_RELEASE(size);
mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
mi_free(p);
}
void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free_size(p,size);
}
void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free(p);
}
// ------------------------------------------------------
// Check for double free in secure and debug mode
// This is somewhat expensive so only enabled for secure mode 4
// ------------------------------------------------------
#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
// linear check if the free list contains a specific element
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
while (list != NULL) {
if (elem==list) return true;
list = mi_block_next(page, list);
}
return false;
}
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
// The decoded value is in the same page (or NULL).
// Walk the free lists to verify positively if it is already freed
if (mi_list_contains(page, page->free, block) ||
mi_list_contains(page, page->local_free, block) ||
mi_list_contains(page, mi_page_thread_free(page), block))
{
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
return true;
}
return false;
}
#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
bool is_double_free = false;
mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
{
// Suspicious: decoded value a in block is in the same page (or NULL) -- maybe a double free?
// (continue in separate function to improve code generation)
is_double_free = mi_check_is_double_freex(page, block);
}
return is_double_free;
}
#else
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
return false;
}
#endif
// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------
#if MI_PADDING // && !MI_TRACK_ENABLED
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
*bsize = mi_page_usable_block_size(page);
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
*delta = padding->delta;
uint32_t canary = padding->canary;
uintptr_t keys[2];
keys[0] = page->keys[0];
keys[1] = page->keys[1];
bool ok = (mi_ptr_encode_canary(page,block,keys) == canary && *delta <= *bsize);
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
return ok;
}
// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
return (ok ? bsize - delta : 0);
}
// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok);
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
mi_assert_internal(bsize >= min_size);
if (bsize < min_size) return; // should never happen
size_t new_delta = (bsize - min_size);
mi_assert_internal(new_delta < bsize);
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
padding->delta = (uint32_t)new_delta;
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
}
#else
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(block);
return mi_page_usable_block_size(page);
}
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
MI_UNUSED(page);
MI_UNUSED(block);
MI_UNUSED(min_size);
}
#endif
#if MI_PADDING && MI_PADDING_CHECK
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
*size = *wrong = bsize;
if (!ok) return false;
mi_assert_internal(bsize >= delta);
*size = bsize - delta;
if (!mi_page_is_huge(page)) {
uint8_t* fill = (uint8_t*)block + bsize - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
mi_track_mem_defined(fill, maxpad);
for (size_t i = 0; i < maxpad; i++) {
if (fill[i] != MI_DEBUG_PADDING) {
*wrong = bsize - delta + i;
ok = false;
break;
}
}
mi_track_mem_noaccess(fill, maxpad);
}
return ok;
}
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
size_t size;
size_t wrong;
if (!mi_verify_padding(page,block,&size,&wrong)) {
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
}
}
#else
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
}
#endif
// only maintain stats for smaller objects if requested
#if (MI_STAT>0)
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(block);
mi_heap_t* const heap = mi_heap_get_default();
const size_t bsize = mi_page_usable_block_size(page);
// #if (MI_STAT>1)
// const size_t usize = mi_page_usable_size_of(page, block);
// mi_heap_stat_decrease(heap, malloc_requested, usize);
// #endif
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, malloc_normal, bsize);
#if (MI_STAT > 1)
mi_heap_stat_decrease(heap, malloc_bins[_mi_bin(bsize)], 1);
#endif
}
//else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
// mi_heap_stat_decrease(heap, malloc_large, bsize);
//}
else {
mi_heap_stat_decrease(heap, malloc_huge, bsize);
}
}
#else
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page); MI_UNUSED(block);
}
#endif
// Remove guard page when building with MI_GUARDED
#if MI_GUARDED
static void mi_block_unguard(mi_page_t* page, mi_block_t* block, void* p) {
MI_UNUSED(p);
mi_assert_internal(mi_block_ptr_is_guarded(block, p));
mi_assert_internal(mi_page_has_aligned(page));
mi_assert_internal((uint8_t*)p - (uint8_t*)block >= (ptrdiff_t)sizeof(mi_block_t));
mi_assert_internal(block->next == MI_BLOCK_TAG_GUARDED);
const size_t bsize = mi_page_block_size(page);
const size_t psize = _mi_os_page_size();
mi_assert_internal(bsize > psize);
mi_assert_internal(_mi_page_segment(page)->allow_decommit);
void* gpage = (uint8_t*)block + bsize - psize;
mi_assert_internal(_mi_is_aligned(gpage, psize));
_mi_os_unprotect(gpage, psize);
}
#endif
|