File: plot_histogram.py

package info (click to toggle)
rust-hyperfine 1.19.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 744 kB
  • sloc: python: 307; makefile: 13
file content (105 lines) | stat: -rwxr-xr-x 2,560 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "matplotlib",
#     "pyqt6",
#     "numpy",
# ]
# ///

"""This program shows `hyperfine` benchmark results as a histogram."""

import argparse
import json

import matplotlib.pyplot as plt
import numpy as np

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("file", help="JSON file with benchmark results")
parser.add_argument("--title", help="Plot title")
parser.add_argument(
    "--labels", help="Comma-separated list of entries for the plot legend"
)
parser.add_argument("--bins", help="Number of bins (default: auto)")
parser.add_argument(
    "--legend-location",
    help="Location of the legend on plot (default: upper center)",
    choices=[
        "upper center",
        "lower center",
        "right",
        "left",
        "best",
        "upper left",
        "upper right",
        "lower left",
        "lower right",
        "center left",
        "center right",
        "center",
    ],
    default="upper center",
)
parser.add_argument(
    "--type", help="Type of histogram (*bar*, barstacked, step, stepfilled)"
)
parser.add_argument("-o", "--output", help="Save image to the given filename.")
parser.add_argument(
    "--t-min", metavar="T", help="Minimum time to be displayed (seconds)"
)
parser.add_argument(
    "--t-max", metavar="T", help="Maximum time to be displayed (seconds)"
)
parser.add_argument(
    "--log-count",
    help="Use a logarithmic y-axis for the event count",
    action="store_true",
)

args = parser.parse_args()

with open(args.file) as f:
    results = json.load(f)["results"]

if args.labels:
    labels = args.labels.split(",")
else:
    labels = [b["command"] for b in results]
all_times = [b["times"] for b in results]

t_min = float(args.t_min) if args.t_min else np.min(list(map(np.min, all_times)))
t_max = float(args.t_max) if args.t_max else np.max(list(map(np.max, all_times)))

bins = int(args.bins) if args.bins else "auto"
histtype = args.type if args.type else "bar"

plt.figure(figsize=(10, 5))
plt.hist(
    all_times,
    label=labels,
    bins=bins,
    histtype=histtype,
    range=(t_min, t_max),
)
plt.legend(
    loc=args.legend_location,
    fancybox=True,
    shadow=True,
    prop={"size": 10, "family": ["Source Code Pro", "Fira Mono", "Courier New"]},
)

plt.xlabel("Time [s]")
if args.title:
    plt.title(args.title)

if args.log_count:
    plt.yscale("log")
else:
    plt.ylim(0, None)

if args.output:
    plt.savefig(args.output, dpi=600)
else:
    plt.show()