1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
use super::{Bucket, Entries, IndexSet, IntoIter, Iter};
use crate::util::try_simplify_range;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{self, Bound, Index, RangeBounds};
/// A dynamically-sized slice of values in an [`IndexSet`].
///
/// This supports indexed operations much like a `[T]` slice,
/// but not any hashed operations on the values.
///
/// Unlike `IndexSet`, `Slice` does consider the order for [`PartialEq`]
/// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`].
#[repr(transparent)]
pub struct Slice<T> {
pub(crate) entries: [Bucket<T>],
}
// SAFETY: `Slice<T>` is a transparent wrapper around `[Bucket<T>]`,
// and reference lifetimes are bound together in function signatures.
#[allow(unsafe_code)]
impl<T> Slice<T> {
pub(super) const fn from_slice(entries: &[Bucket<T>]) -> &Self {
unsafe { &*(entries as *const [Bucket<T>] as *const Self) }
}
pub(super) fn from_boxed(entries: Box<[Bucket<T>]>) -> Box<Self> {
unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) }
}
fn into_boxed(self: Box<Self>) -> Box<[Bucket<T>]> {
unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket<T>]) }
}
}
impl<T> Slice<T> {
pub(crate) fn into_entries(self: Box<Self>) -> Vec<Bucket<T>> {
self.into_boxed().into_vec()
}
/// Returns an empty slice.
pub const fn new<'a>() -> &'a Self {
Self::from_slice(&[])
}
/// Return the number of elements in the set slice.
pub const fn len(&self) -> usize {
self.entries.len()
}
/// Returns true if the set slice contains no elements.
pub const fn is_empty(&self) -> bool {
self.entries.is_empty()
}
/// Get a value by index.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_index(&self, index: usize) -> Option<&T> {
self.entries.get(index).map(Bucket::key_ref)
}
/// Returns a slice of values in the given range of indices.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Self> {
let range = try_simplify_range(range, self.entries.len())?;
self.entries.get(range).map(Self::from_slice)
}
/// Get the first value.
pub fn first(&self) -> Option<&T> {
self.entries.first().map(Bucket::key_ref)
}
/// Get the last value.
pub fn last(&self) -> Option<&T> {
self.entries.last().map(Bucket::key_ref)
}
/// Divides one slice into two at an index.
///
/// ***Panics*** if `index > len`.
pub fn split_at(&self, index: usize) -> (&Self, &Self) {
let (first, second) = self.entries.split_at(index);
(Self::from_slice(first), Self::from_slice(second))
}
/// Returns the first value and the rest of the slice,
/// or `None` if it is empty.
pub fn split_first(&self) -> Option<(&T, &Self)> {
if let [first, rest @ ..] = &self.entries {
Some((&first.key, Self::from_slice(rest)))
} else {
None
}
}
/// Returns the last value and the rest of the slice,
/// or `None` if it is empty.
pub fn split_last(&self) -> Option<(&T, &Self)> {
if let [rest @ .., last] = &self.entries {
Some((&last.key, Self::from_slice(rest)))
} else {
None
}
}
/// Return an iterator over the values of the set slice.
pub fn iter(&self) -> Iter<'_, T> {
Iter::new(&self.entries)
}
/// Search over a sorted set for a value.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search`] for more details.
///
/// Computes in **O(log(n))** time, which is notably less scalable than looking the value up in
/// the set this is a slice from using [`IndexSet::get_index_of`], but this can also position
/// missing values.
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
where
T: Ord,
{
self.binary_search_by(|p| p.cmp(x))
}
/// Search over a sorted set with a comparator function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> Ordering,
{
self.entries.binary_search_by(move |a| f(&a.key))
}
/// Search over a sorted set with an extraction function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> B,
B: Ord,
{
self.binary_search_by(|k| f(k).cmp(b))
}
/// Returns the index of the partition point of a sorted set according to the given predicate
/// (the index of the first element of the second partition).
///
/// See [`slice::partition_point`] for more details.
///
/// Computes in **O(log(n))** time.
#[must_use]
pub fn partition_point<P>(&self, mut pred: P) -> usize
where
P: FnMut(&T) -> bool,
{
self.entries.partition_point(move |a| pred(&a.key))
}
}
impl<'a, T> IntoIterator for &'a Slice<T> {
type IntoIter = Iter<'a, T>;
type Item = &'a T;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T> IntoIterator for Box<Slice<T>> {
type IntoIter = IntoIter<T>;
type Item = T;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.into_entries())
}
}
impl<T> Default for &'_ Slice<T> {
fn default() -> Self {
Slice::from_slice(&[])
}
}
impl<T> Default for Box<Slice<T>> {
fn default() -> Self {
Slice::from_boxed(Box::default())
}
}
impl<T: Clone> Clone for Box<Slice<T>> {
fn clone(&self) -> Self {
Slice::from_boxed(self.entries.to_vec().into_boxed_slice())
}
}
impl<T: Copy> From<&Slice<T>> for Box<Slice<T>> {
fn from(slice: &Slice<T>) -> Self {
Slice::from_boxed(Box::from(&slice.entries))
}
}
impl<T: fmt::Debug> fmt::Debug for Slice<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self).finish()
}
}
impl<T: PartialEq> PartialEq for Slice<T> {
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other)
}
}
impl<T: Eq> Eq for Slice<T> {}
impl<T: PartialOrd> PartialOrd for Slice<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
}
impl<T: Ord> Ord for Slice<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<T: Hash> Hash for Slice<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for value in self {
value.hash(state);
}
}
}
impl<T> Index<usize> for Slice<T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
&self.entries[index].key
}
}
// We can't have `impl<I: RangeBounds<usize>> Index<I>` because that conflicts with `Index<usize>`.
// Instead, we repeat the implementations for all the core range types.
macro_rules! impl_index {
($($range:ty),*) => {$(
impl<T, S> Index<$range> for IndexSet<T, S> {
type Output = Slice<T>;
fn index(&self, range: $range) -> &Self::Output {
Slice::from_slice(&self.as_entries()[range])
}
}
impl<T> Index<$range> for Slice<T> {
type Output = Self;
fn index(&self, range: $range) -> &Self::Output {
Slice::from_slice(&self.entries[range])
}
}
)*}
}
impl_index!(
ops::Range<usize>,
ops::RangeFrom<usize>,
ops::RangeFull,
ops::RangeInclusive<usize>,
ops::RangeTo<usize>,
ops::RangeToInclusive<usize>,
(Bound<usize>, Bound<usize>)
);
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
#[test]
fn slice_index() {
fn check(vec_slice: &[i32], set_slice: &Slice<i32>, sub_slice: &Slice<i32>) {
assert_eq!(set_slice as *const _, sub_slice as *const _);
itertools::assert_equal(vec_slice, set_slice);
}
let vec: Vec<i32> = (0..10).map(|i| i * i).collect();
let set: IndexSet<i32> = vec.iter().cloned().collect();
let slice = set.as_slice();
// RangeFull
check(&vec[..], &set[..], &slice[..]);
for i in 0usize..10 {
// Index
assert_eq!(vec[i], set[i]);
assert_eq!(vec[i], slice[i]);
// RangeFrom
check(&vec[i..], &set[i..], &slice[i..]);
// RangeTo
check(&vec[..i], &set[..i], &slice[..i]);
// RangeToInclusive
check(&vec[..=i], &set[..=i], &slice[..=i]);
// (Bound<usize>, Bound<usize>)
let bounds = (Bound::Excluded(i), Bound::Unbounded);
check(&vec[i + 1..], &set[bounds], &slice[bounds]);
for j in i..=10 {
// Range
check(&vec[i..j], &set[i..j], &slice[i..j]);
}
for j in i..10 {
// RangeInclusive
check(&vec[i..=j], &set[i..=j], &slice[i..=j]);
}
}
}
}
|