1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR MIT
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the THIRD-PARTY file.
use libc::{open, O_CLOEXEC, O_RDWR};
use std::ffi::CStr;
use std::fs::File;
use std::os::raw::{c_char, c_ulong};
use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use crate::cap::Cap;
use crate::ioctls::vm::{new_vmfd, VmFd};
use crate::ioctls::Result;
use crate::kvm_ioctls::*;
#[cfg(target_arch = "aarch64")]
use kvm_bindings::KVM_VM_TYPE_ARM_IPA_SIZE_MASK;
#[cfg(target_arch = "x86_64")]
use kvm_bindings::{CpuId, MsrList, Msrs, KVM_MAX_CPUID_ENTRIES, KVM_MAX_MSR_ENTRIES};
use vmm_sys_util::errno;
#[cfg(target_arch = "x86_64")]
use vmm_sys_util::ioctl::ioctl_with_mut_ptr;
use vmm_sys_util::ioctl::{ioctl, ioctl_with_val};
/// Wrapper over KVM system ioctls.
#[derive(Debug)]
pub struct Kvm {
kvm: File,
}
impl Kvm {
/// Opens `/dev/kvm` and returns a `Kvm` object on success.
///
/// # Example
///
/// ```
/// use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// ```
#[allow(clippy::new_ret_no_self)]
pub fn new() -> Result<Self> {
// Open `/dev/kvm` using `O_CLOEXEC` flag.
let fd = Self::open_with_cloexec(true)?;
// SAFETY: Safe because we verify that the fd is valid in `open_with_cloexec` and we own
// the fd.
Ok(unsafe { Self::from_raw_fd(fd) })
}
/// Opens the KVM device at `kvm_path` and returns a `Kvm` object on success.
///
/// # Arguments
///
/// * `kvm_path`: path to the KVM device. Usually it is `/dev/kvm`.
///
/// # Example
///
/// ```
/// use kvm_ioctls::Kvm;
/// use std::ffi::CString;
/// let kvm_path = CString::new("/dev/kvm").unwrap();
/// let kvm = Kvm::new_with_path(&kvm_path).unwrap();
/// ```
#[allow(clippy::new_ret_no_self)]
pub fn new_with_path<P>(kvm_path: P) -> Result<Self>
where
P: AsRef<CStr>,
{
// Open `kvm_path` using `O_CLOEXEC` flag.
let fd = Self::open_with_cloexec_at(kvm_path, true)?;
// SAFETY: Safe because we verify that the fd is valid in `open_with_cloexec_at`
// and we own the fd.
Ok(unsafe { Self::from_raw_fd(fd) })
}
/// Opens `/dev/kvm` and returns the fd number on success.
///
/// One usecase for this method is opening `/dev/kvm` before exec-ing into a
/// process with seccomp filters enabled that blacklist the `sys_open` syscall.
/// For this usecase `open_with_cloexec` must be called with the `close_on_exec`
/// parameter set to false.
///
/// # Arguments
///
/// * `close_on_exec`: If true opens `/dev/kvm` using the `O_CLOEXEC` flag.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// # use std::os::unix::io::FromRawFd;
/// let kvm_fd = Kvm::open_with_cloexec(false).unwrap();
/// // The `kvm_fd` can now be passed to another process where we can use
/// // `from_raw_fd` for creating a `Kvm` object:
/// let kvm = unsafe { Kvm::from_raw_fd(kvm_fd) };
/// ```
pub fn open_with_cloexec(close_on_exec: bool) -> Result<RawFd> {
// SAFETY: Safe because we give a constant nul-terminated string.
let kvm_path = c"/dev/kvm";
Self::open_with_cloexec_at(kvm_path, close_on_exec)
}
/// Opens the KVM device at `kvm_path` and returns the fd number on success.
/// Same as [open_with_cloexec()](struct.Kvm.html#method.open_with_cloexec)
/// except this method opens `kvm_path` instead of `/dev/kvm`.
///
/// # Arguments
///
/// * `kvm_path`: path to the KVM device. Usually it is `/dev/kvm`.
/// * `close_on_exec`: If true opens `kvm_path` using the `O_CLOEXEC` flag.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// # use std::ffi::CString;
/// # use std::os::unix::io::FromRawFd;
/// let kvm_path = CString::new("/dev/kvm").unwrap();
/// let kvm_fd = Kvm::open_with_cloexec_at(kvm_path, false).unwrap();
/// // The `kvm_fd` can now be passed to another process where we can use
/// // `from_raw_fd` for creating a `Kvm` object:
/// let kvm = unsafe { Kvm::from_raw_fd(kvm_fd) };
/// ```
pub fn open_with_cloexec_at<P>(path: P, close_on_exec: bool) -> Result<RawFd>
where
P: AsRef<CStr>,
{
let open_flags = O_RDWR | if close_on_exec { O_CLOEXEC } else { 0 };
// SAFETY: Safe because we verify the result.
let ret = unsafe { open(path.as_ref().as_ptr() as *const c_char, open_flags) };
if ret < 0 {
Err(errno::Error::last())
} else {
Ok(ret)
}
}
/// Returns the KVM API version.
///
/// See the documentation for `KVM_GET_API_VERSION`.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// assert_eq!(kvm.get_api_version(), 12);
/// ```
pub fn get_api_version(&self) -> i32 {
// SAFETY: Safe because we know that our file is a KVM fd and that the request is one of
// the ones defined by kernel.
unsafe { ioctl(self, KVM_GET_API_VERSION()) }
}
/// AArch64 specific call to get the host Intermediate Physical Address space limit.
///
/// Returns 0 if the capability is not available and an integer >= 32 otherwise.
#[cfg(target_arch = "aarch64")]
pub fn get_host_ipa_limit(&self) -> i32 {
self.check_extension_int(Cap::ArmVmIPASize)
}
/// AArch64 specific call to get the number of supported hardware breakpoints.
///
/// Returns 0 if the capability is not available and a positive integer otherwise.
#[cfg(target_arch = "aarch64")]
pub fn get_guest_debug_hw_bps(&self) -> i32 {
self.check_extension_int(Cap::DebugHwBps)
}
/// AArch64 specific call to get the number of supported hardware watchpoints.
///
/// Returns 0 if the capability is not available and a positive integer otherwise.
#[cfg(target_arch = "aarch64")]
pub fn get_guest_debug_hw_wps(&self) -> i32 {
self.check_extension_int(Cap::DebugHwWps)
}
/// Wrapper over `KVM_CHECK_EXTENSION`.
///
/// Returns 0 if the capability is not available and a positive integer otherwise.
/// See the documentation for `KVM_CHECK_EXTENSION`.
///
/// # Arguments
///
/// * `c` - KVM capability to check in a form of a raw integer.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// # use std::os::raw::c_ulong;
/// use kvm_ioctls::Cap;
///
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.check_extension_raw(Cap::MaxVcpus as c_ulong) > 0);
/// ```
pub fn check_extension_raw(&self, c: c_ulong) -> i32 {
// SAFETY: Safe because we know that our file is a KVM fd.
// If `c` is not a known kernel extension, kernel will return 0.
unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION(), c) }
}
/// Wrapper over `KVM_CHECK_EXTENSION`.
///
/// Returns 0 if the capability is not available and a positive integer otherwise.
/// See the documentation for `KVM_CHECK_EXTENSION`.
///
/// # Arguments
///
/// * `c` - KVM capability to check.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// use kvm_ioctls::Cap;
///
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.check_extension_int(Cap::MaxVcpus) > 0);
/// ```
pub fn check_extension_int(&self, c: Cap) -> i32 {
self.check_extension_raw(c as c_ulong)
}
/// Checks if a particular `Cap` is available.
///
/// Returns true if the capability is supported and false otherwise.
/// See the documentation for `KVM_CHECK_EXTENSION`.
///
/// # Arguments
///
/// * `c` - KVM capability to check.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// use kvm_ioctls::Cap;
///
/// let kvm = Kvm::new().unwrap();
/// // Check if `KVM_CAP_USER_MEMORY` is supported.
/// assert!(kvm.check_extension(Cap::UserMemory));
/// ```
pub fn check_extension(&self, c: Cap) -> bool {
self.check_extension_int(c) > 0
}
/// Returns the size of the memory mapping required to use the vcpu's `kvm_run` structure.
///
/// See the documentation for `KVM_GET_VCPU_MMAP_SIZE`.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.get_vcpu_mmap_size().unwrap() > 0);
/// ```
pub fn get_vcpu_mmap_size(&self) -> Result<usize> {
// SAFETY: Safe because we know that our file is a KVM fd and we verify the return result.
let res = unsafe { ioctl(self, KVM_GET_VCPU_MMAP_SIZE()) };
if res > 0 {
Ok(res as usize)
} else {
Err(errno::Error::last())
}
}
/// Gets the recommended number of VCPUs per VM.
///
/// See the documentation for `KVM_CAP_NR_VCPUS`.
/// Default to 4 when `KVM_CAP_NR_VCPUS` is not implemented.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// // We expect the number of vCPUs to be > 0 as per KVM API documentation.
/// assert!(kvm.get_nr_vcpus() > 0);
/// ```
pub fn get_nr_vcpus(&self) -> usize {
let x = self.check_extension_int(Cap::NrVcpus);
if x > 0 {
x as usize
} else {
4
}
}
/// Returns the maximum allowed memory slots per VM.
///
/// KVM reports the number of available memory slots (`KVM_CAP_NR_MEMSLOTS`)
/// using the extension interface. Both x86 and s390 implement this, ARM
/// and powerpc do not yet enable it.
/// Default to 32 when `KVM_CAP_NR_MEMSLOTS` is not implemented.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.get_nr_memslots() > 0);
/// ```
pub fn get_nr_memslots(&self) -> usize {
let x = self.check_extension_int(Cap::NrMemslots);
if x > 0 {
x as usize
} else {
32
}
}
/// Gets the recommended maximum number of VCPUs per VM.
///
/// See the documentation for `KVM_CAP_MAX_VCPUS`.
/// Returns [get_nr_vcpus()](struct.Kvm.html#method.get_nr_vcpus) when
/// `KVM_CAP_MAX_VCPUS` is not implemented.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.get_max_vcpus() > 0);
/// ```
pub fn get_max_vcpus(&self) -> usize {
match self.check_extension_int(Cap::MaxVcpus) {
0 => self.get_nr_vcpus(),
x => x as usize,
}
}
/// Gets the Maximum VCPU ID per VM.
///
/// See the documentation for `KVM_CAP_MAX_VCPU_ID`
/// Returns [get_max_vcpus()](struct.Kvm.html#method.get_max_vcpus) when
/// `KVM_CAP_MAX_VCPU_ID` is not implemented
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// assert!(kvm.get_max_vcpu_id() > 0);
/// ```
pub fn get_max_vcpu_id(&self) -> usize {
match self.check_extension_int(Cap::MaxVcpuId) {
0 => self.get_max_vcpus(),
x => x as usize,
}
}
#[cfg(target_arch = "x86_64")]
fn get_cpuid(&self, kind: u64, num_entries: usize) -> Result<CpuId> {
if num_entries > KVM_MAX_CPUID_ENTRIES {
// Returns the same error the underlying `ioctl` would have sent.
return Err(errno::Error::new(libc::ENOMEM));
}
let mut cpuid = CpuId::new(num_entries).map_err(|_| errno::Error::new(libc::ENOMEM))?;
// SAFETY: The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nent, which is set to the allocated
// size(num_entries) above.
let ret = unsafe { ioctl_with_mut_ptr(self, kind, cpuid.as_mut_fam_struct_ptr()) };
if ret < 0 {
return Err(errno::Error::last());
}
Ok(cpuid)
}
/// X86 specific call to get the system emulated CPUID values.
///
/// See the documentation for `KVM_GET_EMULATED_CPUID`.
///
/// # Arguments
///
/// * `num_entries` - Maximum number of CPUID entries. This function can return less than
/// this when the hardware does not support so many CPUID entries.
///
/// Returns Error `errno::Error(libc::ENOMEM)` when the input `num_entries` is greater than
/// `KVM_MAX_CPUID_ENTRIES`.
///
/// # Example
///
/// ```
/// extern crate kvm_bindings;
/// use kvm_bindings::KVM_MAX_CPUID_ENTRIES;
/// use kvm_ioctls::Kvm;
///
/// let kvm = Kvm::new().unwrap();
/// let mut cpuid = kvm.get_emulated_cpuid(KVM_MAX_CPUID_ENTRIES).unwrap();
/// let cpuid_entries = cpuid.as_mut_slice();
/// assert!(cpuid_entries.len() <= KVM_MAX_CPUID_ENTRIES);
/// ```
#[cfg(target_arch = "x86_64")]
pub fn get_emulated_cpuid(&self, num_entries: usize) -> Result<CpuId> {
self.get_cpuid(KVM_GET_EMULATED_CPUID(), num_entries)
}
/// X86 specific call to get the system supported CPUID values.
///
/// See the documentation for `KVM_GET_SUPPORTED_CPUID`.
///
/// # Arguments
///
/// * `num_entries` - Maximum number of CPUID entries. This function can return less than
/// this when the hardware does not support so many CPUID entries.
///
/// Returns Error `errno::Error(libc::ENOMEM)` when the input `num_entries` is greater than
/// `KVM_MAX_CPUID_ENTRIES`.
///
/// # Example
///
/// ```
/// extern crate kvm_bindings;
/// use kvm_bindings::KVM_MAX_CPUID_ENTRIES;
/// use kvm_ioctls::Kvm;
///
/// let kvm = Kvm::new().unwrap();
/// let mut cpuid = kvm.get_supported_cpuid(KVM_MAX_CPUID_ENTRIES).unwrap();
/// let cpuid_entries = cpuid.as_mut_slice();
/// assert!(cpuid_entries.len() <= KVM_MAX_CPUID_ENTRIES);
/// ```
#[cfg(target_arch = "x86_64")]
pub fn get_supported_cpuid(&self, num_entries: usize) -> Result<CpuId> {
self.get_cpuid(KVM_GET_SUPPORTED_CPUID(), num_entries)
}
/// X86 specific call to get list of supported MSRS
///
/// See the documentation for `KVM_GET_MSR_INDEX_LIST`.
///
/// # Example
///
/// ```
/// use kvm_ioctls::Kvm;
///
/// let kvm = Kvm::new().unwrap();
/// let msr_index_list = kvm.get_msr_index_list().unwrap();
/// ```
#[cfg(target_arch = "x86_64")]
pub fn get_msr_index_list(&self) -> Result<MsrList> {
let mut msr_list =
MsrList::new(KVM_MAX_MSR_ENTRIES).map_err(|_| errno::Error::new(libc::ENOMEM))?;
// SAFETY: The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nmsrs, which is set to the allocated
// size (KVM_MAX_MSR_ENTRIES) above.
let ret = unsafe {
ioctl_with_mut_ptr(
self,
KVM_GET_MSR_INDEX_LIST(),
msr_list.as_mut_fam_struct_ptr(),
)
};
if ret < 0 {
return Err(errno::Error::last());
}
// The ioctl will also update the internal `nmsrs` with the actual count.
Ok(msr_list)
}
/// X86 specific call to get a list of MSRs that can be passed to the KVM_GET_MSRS system ioctl.
///
/// See the documentation for `KVM_GET_MSR_FEATURE_INDEX_LIST`.
///
/// # Example
///
/// ```
/// use kvm_bindings::{kvm_msr_entry, Msrs};
/// use kvm_ioctls::Kvm;
///
/// let kvm = Kvm::new().unwrap();
/// let msr_feature_index_list = kvm.get_msr_feature_index_list().unwrap();
/// ```
#[cfg(target_arch = "x86_64")]
pub fn get_msr_feature_index_list(&self) -> Result<MsrList> {
let mut msr_list =
MsrList::new(KVM_MAX_MSR_ENTRIES).map_err(|_| errno::Error::new(libc::ENOMEM))?;
// SAFETY: The kernel is trusted not to write beyond the bounds of the memory
// allocated for the struct. The limit is read from nmsrs, which is set to the allocated
// size (KVM_MAX_MSR_ENTRIES) above.
let ret = unsafe {
ioctl_with_mut_ptr(
self,
KVM_GET_MSR_FEATURE_INDEX_LIST(),
msr_list.as_mut_fam_struct_ptr(),
)
};
if ret < 0 {
return Err(errno::Error::last());
}
Ok(msr_list)
}
/// X86 specific call to read the values of MSR-based features that are available for the VM.
/// As opposed to `VcpuFd::get_msrs()`, this call returns all the MSRs supported by the
/// system, similar to `get_supported_cpuid()` for CPUID.
///
/// See the documentation for `KVM_GET_MSRS`.
///
/// # Arguments
///
/// * `msrs` - MSRs (input/output). For details check the `kvm_msrs` structure in the
/// [KVM API doc](https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt).
///
/// # Example
///
/// ```
/// use kvm_bindings::{kvm_msr_entry, Msrs};
/// use kvm_ioctls::Kvm;
///
/// let kvm = Kvm::new().unwrap();
/// let msr_feature_index_list = kvm.get_msr_feature_index_list().unwrap();
/// let mut msrs = Msrs::from_entries(
/// &msr_feature_index_list
/// .as_slice()
/// .iter()
/// .map(|&idx| kvm_msr_entry {
/// index: idx,
/// ..Default::default()
/// })
/// .collect::<Vec<_>>(),
/// )
/// .unwrap();
/// let ret = kvm.get_msrs(&mut msrs).unwrap();
/// ```
#[cfg(target_arch = "x86_64")]
pub fn get_msrs(&self, msrs: &mut Msrs) -> Result<usize> {
// SAFETY: Here we trust the kernel not to read past the end of the kvm_msrs struct.
let ret = unsafe { ioctl_with_mut_ptr(self, KVM_GET_MSRS(), msrs.as_mut_fam_struct_ptr()) };
if ret < 0 {
return Err(errno::Error::last());
}
Ok(ret as usize)
}
/// Creates a VM fd using the KVM fd.
///
/// See the documentation for `KVM_CREATE_VM`.
/// A call to this function will also initialize the size of the vcpu mmap area using the
/// `KVM_GET_VCPU_MMAP_SIZE` ioctl.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// let vm = kvm.create_vm().unwrap();
/// // Check that the VM mmap size is the same reported by `KVM_GET_VCPU_MMAP_SIZE`.
/// assert!(vm.run_size() == kvm.get_vcpu_mmap_size().unwrap());
/// ```
#[cfg(not(target_arch = "aarch64"))]
pub fn create_vm(&self) -> Result<VmFd> {
self.create_vm_with_type(0) // Create using default VM type
}
/// AArch64 specific create_vm to create a VM fd using the KVM fd using the host's maximum IPA size.
///
/// See the arm64 section of KVM documentation for `KVM_CREATE_VM`.
/// A call to this function will also initialize the size of the vcpu mmap area using the
/// `KVM_GET_VCPU_MMAP_SIZE` ioctl.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// let vm = kvm.create_vm().unwrap();
/// // Check that the VM mmap size is the same reported by `KVM_GET_VCPU_MMAP_SIZE`.
/// assert_eq!(vm.run_size(), kvm.get_vcpu_mmap_size().unwrap());
/// ```
#[cfg(target_arch = "aarch64")]
pub fn create_vm(&self) -> Result<VmFd> {
let mut ipa_size = 0; // Create using default VM type
if self.check_extension(Cap::ArmVmIPASize) {
ipa_size = self.get_host_ipa_limit();
}
self.create_vm_with_type(ipa_size as u64)
}
/// AArch64 specific function to create a VM fd using the KVM fd with flexible IPA size.
///
/// See the arm64 section of KVM documentation for `KVM_CREATE_VM`.
/// A call to this function will also initialize the size of the vcpu mmap area using the
/// `KVM_GET_VCPU_MMAP_SIZE` ioctl.
///
/// Note: `Cap::ArmVmIPASize` should be checked using `check_extension` before calling
/// this function to determine if the host machine supports the IPA size capability.
///
/// # Arguments
///
/// * `ipa_size` - Guest VM IPA size, 32 <= ipa_size <= Host_IPA_Limit.
/// The value of `Host_IPA_Limit` may be different between hardware
/// implementations and can be extracted by calling `get_host_ipa_limit`.
/// Possible values can be found in documentation of registers `TCR_EL2`
/// and `VTCR_EL2`.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::{Kvm, Cap};
/// let kvm = Kvm::new().unwrap();
/// // Check if the ArmVmIPASize cap is supported.
/// if kvm.check_extension(Cap::ArmVmIPASize) {
/// let host_ipa_limit = kvm.get_host_ipa_limit();
/// let vm = kvm.create_vm_with_ipa_size(host_ipa_limit as u32).unwrap();
/// // Check that the VM mmap size is the same reported by `KVM_GET_VCPU_MMAP_SIZE`.
/// assert_eq!(vm.run_size(), kvm.get_vcpu_mmap_size().unwrap());
/// }
/// ```
#[cfg(target_arch = "aarch64")]
pub fn create_vm_with_ipa_size(&self, ipa_size: u32) -> Result<VmFd> {
self.create_vm_with_type((ipa_size & KVM_VM_TYPE_ARM_IPA_SIZE_MASK).into())
}
/// Creates a VM fd using the KVM fd of a specific type.
///
/// See the documentation for `KVM_CREATE_VM`.
/// A call to this function will also initialize the size of the vcpu mmap area using the
/// `KVM_GET_VCPU_MMAP_SIZE` ioctl.
///
/// * `vm_type` - Platform and architecture specific platform VM type. A value of 0 is the equivalent
/// to using the default VM type.
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// let vm = kvm.create_vm_with_type(0).unwrap();
/// // Check that the VM mmap size is the same reported by `KVM_GET_VCPU_MMAP_SIZE`.
/// assert_eq!(vm.run_size(), kvm.get_vcpu_mmap_size().unwrap());
/// ```
pub fn create_vm_with_type(&self, vm_type: u64) -> Result<VmFd> {
// SAFETY: Safe because we know `self.kvm` is a real KVM fd as this module is the only one
// that create Kvm objects.
let ret = unsafe { ioctl_with_val(&self.kvm, KVM_CREATE_VM(), vm_type) };
if ret >= 0 {
// SAFETY: Safe because we verify the value of ret and we are the owners of the fd.
let vm_file = unsafe { File::from_raw_fd(ret) };
let run_mmap_size = self.get_vcpu_mmap_size()?;
Ok(new_vmfd(vm_file, run_mmap_size))
} else {
Err(errno::Error::last())
}
}
/// Creates a VmFd object from a VM RawFd.
///
/// # Arguments
///
/// * `fd` - the RawFd used for creating the VmFd object.
///
/// # Safety
///
/// This function is unsafe as the primitives currently returned have the contract that
/// they are the sole owner of the file descriptor they are wrapping. Usage of this function
/// could accidentally allow violating this contract which can cause memory unsafety in code
/// that relies on it being true.
///
/// The caller of this method must make sure the fd is valid and nothing else uses it.
///
/// # Example
///
/// ```rust
/// # extern crate kvm_ioctls;
/// # use std::os::unix::io::AsRawFd;
/// # use kvm_ioctls::Kvm;
/// let kvm = Kvm::new().unwrap();
/// let vm = kvm.create_vm().unwrap();
/// let rawfd = unsafe { libc::dup(vm.as_raw_fd()) };
/// assert!(rawfd >= 0);
/// let vm = unsafe { kvm.create_vmfd_from_rawfd(rawfd).unwrap() };
/// ```
pub unsafe fn create_vmfd_from_rawfd(&self, fd: RawFd) -> Result<VmFd> {
let run_mmap_size = self.get_vcpu_mmap_size()?;
Ok(new_vmfd(File::from_raw_fd(fd), run_mmap_size))
}
}
impl AsRawFd for Kvm {
fn as_raw_fd(&self) -> RawFd {
self.kvm.as_raw_fd()
}
}
impl FromRawFd for Kvm {
/// Creates a new Kvm object assuming `fd` represents an existing open file descriptor
/// associated with `/dev/kvm`.
///
/// For usage examples check [open_with_cloexec()](struct.Kvm.html#method.open_with_cloexec).
///
/// # Arguments
///
/// * `fd` - File descriptor for `/dev/kvm`.
///
/// # Safety
///
/// This function is unsafe as the primitives currently returned have the contract that
/// they are the sole owner of the file descriptor they are wrapping. Usage of this function
/// could accidentally allow violating this contract which can cause memory unsafety in code
/// that relies on it being true.
///
/// The caller of this method must make sure the fd is valid and nothing else uses it.
///
/// # Example
///
/// ```
/// # use kvm_ioctls::Kvm;
/// # use std::os::unix::io::FromRawFd;
/// let kvm_fd = Kvm::open_with_cloexec(true).unwrap();
/// // Safe because we verify that the fd is valid in `open_with_cloexec` and we own the fd.
/// let kvm = unsafe { Kvm::from_raw_fd(kvm_fd) };
/// ```
unsafe fn from_raw_fd(fd: RawFd) -> Self {
Kvm {
kvm: File::from_raw_fd(fd),
}
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::undocumented_unsafe_blocks)]
use super::*;
use libc::{fcntl, FD_CLOEXEC, F_GETFD};
use std::os::fd::IntoRawFd;
#[cfg(target_arch = "x86_64")]
use vmm_sys_util::fam::FamStruct;
#[test]
fn test_kvm_new() {
Kvm::new();
}
#[test]
fn test_kvm_new_with_path() {
let kvm_path = c"/dev/kvm";
Kvm::new_with_path(kvm_path);
}
#[test]
fn test_open_with_cloexec() {
let Ok(fd) = Kvm::open_with_cloexec(false) else { return };
let flags = unsafe { fcntl(fd, F_GETFD, 0) };
assert_eq!(flags & FD_CLOEXEC, 0);
let fd = Kvm::open_with_cloexec(true).unwrap();
let flags = unsafe { fcntl(fd, F_GETFD, 0) };
assert_eq!(flags & FD_CLOEXEC, FD_CLOEXEC);
}
#[test]
fn test_open_with_cloexec_at() {
let kvm_path = std::ffi::CString::new("/dev/kvm").unwrap();
let Ok(fd) = Kvm::open_with_cloexec_at(&kvm_path, false) else { return };
let flags = unsafe { fcntl(fd, F_GETFD, 0) };
assert_eq!(flags & FD_CLOEXEC, 0);
let fd = Kvm::open_with_cloexec_at(&kvm_path, true).unwrap();
let flags = unsafe { fcntl(fd, F_GETFD, 0) };
assert_eq!(flags & FD_CLOEXEC, FD_CLOEXEC);
}
#[test]
fn test_kvm_api_version() {
let Ok(kvm) = Kvm::new() else { return };
assert_eq!(kvm.get_api_version(), 12);
assert!(kvm.check_extension(Cap::UserMemory));
}
#[test]
fn test_kvm_check_extension() {
let Ok(kvm) = Kvm::new() else { return };
// unsupported extension will return 0
assert_eq!(kvm.check_extension_raw(696969), 0);
}
#[test]
#[cfg(target_arch = "aarch64")]
fn test_get_host_ipa_limit() {
let Ok(kvm) = Kvm::new() else { return };
let host_ipa_limit = kvm.get_host_ipa_limit();
if host_ipa_limit > 0 {
assert!(host_ipa_limit >= 32);
} else {
// if unsupported, the return value should be 0.
assert_eq!(host_ipa_limit, 0);
}
}
#[test]
#[cfg(target_arch = "aarch64")]
fn test_guest_debug_hw_capacity() {
let Ok(kvm) = Kvm::new() else { return };
// The number of supported breakpoints and watchpoints may vary on
// different platforms.
// It could be 0 if no supported, or any positive integer otherwise.
assert!(kvm.get_guest_debug_hw_bps() >= 0);
assert!(kvm.get_guest_debug_hw_wps() >= 0);
}
#[test]
fn test_kvm_getters() {
let Ok(kvm) = Kvm::new() else { return };
// vCPU related getters
let nr_vcpus = kvm.get_nr_vcpus();
assert!(nr_vcpus >= 4);
assert!(kvm.get_max_vcpus() >= nr_vcpus);
// Memory related getters
assert!(kvm.get_vcpu_mmap_size().unwrap() > 0);
assert!(kvm.get_nr_memslots() >= 32);
}
#[test]
fn test_create_vm() {
let Ok(kvm) = Kvm::new() else { return };
let vm = kvm.create_vm().unwrap();
// Test create_vmfd_from_rawfd()
let rawfd = unsafe { libc::dup(vm.as_raw_fd()) };
assert!(rawfd >= 0);
let vm = unsafe { kvm.create_vmfd_from_rawfd(rawfd).unwrap() };
assert_eq!(vm.run_size(), kvm.get_vcpu_mmap_size().unwrap());
}
#[test]
fn test_create_vm_with_type() {
let Ok(kvm) = Kvm::new() else { return };
let vm = kvm.create_vm_with_type(0).unwrap();
// Test create_vmfd_from_rawfd()
let rawfd = unsafe { libc::dup(vm.as_raw_fd()) };
assert!(rawfd >= 0);
let vm = unsafe { kvm.create_vmfd_from_rawfd(rawfd).unwrap() };
assert_eq!(vm.run_size(), kvm.get_vcpu_mmap_size().unwrap());
}
#[test]
#[cfg(target_arch = "aarch64")]
fn test_create_vm_with_ipa_size() {
let Ok(kvm) = Kvm::new() else { return };
if kvm.check_extension(Cap::ArmVmIPASize) {
let host_ipa_limit = kvm.get_host_ipa_limit();
// Here we test with the maximum value that the host supports to both test the
// discoverability of supported IPA sizes and likely some other values than 40.
kvm.create_vm_with_ipa_size(host_ipa_limit as u32).unwrap();
// Test invalid input values
// Case 1: IPA size is smaller than 32.
kvm.create_vm_with_ipa_size(31).unwrap_err();
// Case 2: IPA size is bigger than Host_IPA_Limit.
kvm.create_vm_with_ipa_size((host_ipa_limit + 1) as u32)
.unwrap_err();
} else {
// Unsupported, we can't provide an IPA size. Only KVM type=0 works.
kvm.create_vm_with_type(0).unwrap_err();
}
}
#[cfg(target_arch = "x86_64")]
#[test]
fn test_get_supported_cpuid() {
let Ok(kvm) = Kvm::new() else { return };
let mut cpuid = kvm.get_supported_cpuid(KVM_MAX_CPUID_ENTRIES).unwrap();
let cpuid_entries = cpuid.as_mut_slice();
assert!(!cpuid_entries.is_empty());
assert!(cpuid_entries.len() <= KVM_MAX_CPUID_ENTRIES);
// Test case for more than MAX entries
let cpuid_err = kvm.get_emulated_cpuid(KVM_MAX_CPUID_ENTRIES + 1_usize);
cpuid_err.unwrap_err();
}
#[test]
#[cfg(target_arch = "x86_64")]
fn test_get_emulated_cpuid() {
let Ok(kvm) = Kvm::new() else { return };
let mut cpuid = kvm.get_emulated_cpuid(KVM_MAX_CPUID_ENTRIES).unwrap();
let cpuid_entries = cpuid.as_mut_slice();
assert!(!cpuid_entries.is_empty());
assert!(cpuid_entries.len() <= KVM_MAX_CPUID_ENTRIES);
// Test case for more than MAX entries
let cpuid_err = kvm.get_emulated_cpuid(KVM_MAX_CPUID_ENTRIES + 1_usize);
cpuid_err.unwrap_err();
}
#[cfg(target_arch = "x86_64")]
#[test]
fn test_cpuid_clone() {
let Ok(kvm) = Kvm::new() else { return };
// Test from_raw_fd()
let rawfd = unsafe { libc::dup(kvm.as_raw_fd()) };
assert!(rawfd >= 0);
let kvm = unsafe { Kvm::from_raw_fd(rawfd) };
let cpuid_1 = kvm.get_supported_cpuid(KVM_MAX_CPUID_ENTRIES).unwrap();
let _ = CpuId::new(cpuid_1.as_fam_struct_ref().len()).unwrap();
}
#[test]
#[cfg(target_arch = "x86_64")]
fn get_msr_index_list() {
let Ok(kvm) = Kvm::new() else { return };
let msr_list = kvm.get_msr_index_list().unwrap();
assert!(msr_list.as_slice().len() >= 2);
}
#[test]
#[cfg(target_arch = "x86_64")]
fn get_msr_feature_index_list() {
let Ok(kvm) = Kvm::new() else { return };
let msr_feature_index_list = kvm.get_msr_feature_index_list().unwrap();
assert!(!msr_feature_index_list.as_slice().is_empty());
}
#[test]
#[cfg(target_arch = "x86_64")]
fn get_msrs() {
use kvm_bindings::kvm_msr_entry;
let Ok(kvm) = Kvm::new() else { return };
let mut msrs = Msrs::from_entries(&[
kvm_msr_entry {
index: 0x0000010a, // MSR_IA32_ARCH_CAPABILITIES
..Default::default()
},
kvm_msr_entry {
index: 0x00000345, // MSR_IA32_PERF_CAPABILITIES
..Default::default()
},
])
.unwrap();
let nmsrs = kvm.get_msrs(&mut msrs).unwrap();
assert_eq!(nmsrs, 2);
}
#[test]
fn test_bad_kvm_fd() {
let badf_errno = libc::EBADF;
let faulty_kvm = Kvm {
kvm: unsafe { File::from_raw_fd(-2) },
};
assert_eq!(
faulty_kvm.get_vcpu_mmap_size().unwrap_err().errno(),
badf_errno
);
assert_eq!(faulty_kvm.get_nr_vcpus(), 4);
assert_eq!(faulty_kvm.get_nr_memslots(), 32);
#[cfg(target_arch = "x86_64")]
{
assert_eq!(
faulty_kvm.get_emulated_cpuid(4).err().unwrap().errno(),
badf_errno
);
assert_eq!(
faulty_kvm.get_supported_cpuid(4).err().unwrap().errno(),
badf_errno
);
assert_eq!(
faulty_kvm.get_msr_index_list().err().unwrap().errno(),
badf_errno
);
}
assert_eq!(faulty_kvm.create_vm().err().unwrap().errno(), badf_errno);
// Don't drop the File object, or it'll notice the file it's trying to close is
// invalid and abort the process.
let _ = faulty_kvm.kvm.into_raw_fd();
}
}
|