1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
#![cfg(any(feature = "compact", feature = "radix"))]
#![allow(dead_code)]
use lexical_parse_float::bellerophon::bellerophon;
use lexical_parse_float::float::{extended_to_float, ExtendedFloat80, RawFloat};
use lexical_parse_float::number::Number;
use lexical_util::format::STANDARD;
pub fn bellerophon_test<F: RawFloat, const FORMAT: u128>(
xmant: u64,
xexp: i32,
many_digits: bool,
ymant: u64,
yexp: i32,
) {
let num = Number {
exponent: xexp as i64,
mantissa: xmant,
is_negative: false,
many_digits,
integer: &[],
fraction: None,
};
let xfp = bellerophon::<F, FORMAT>(&num, false);
let yfp = ExtendedFloat80 {
mant: ymant,
exp: yexp,
};
// Given us useful error messages if the floats are valid.
if xfp.exp >= 0 && yfp.exp >= 0 {
assert!(
xfp == yfp,
"x != y, xfp={:?}, yfp={:?}, x={:?}, y={:?}",
xfp,
yfp,
extended_to_float::<F>(xfp),
extended_to_float::<F>(yfp)
);
} else {
assert_eq!(xfp, yfp);
}
}
pub fn compute_float32(q: i64, w: u64) -> (i32, u64) {
let num = Number {
exponent: q,
mantissa: w,
is_negative: false,
many_digits: false,
integer: &[],
fraction: None,
};
let fp = bellerophon::<f32, { STANDARD }>(&num, false);
(fp.exp, fp.mant)
}
pub fn compute_float64(q: i64, w: u64) -> (i32, u64) {
let num = Number {
exponent: q,
mantissa: w,
is_negative: false,
many_digits: false,
integer: &[],
fraction: None,
};
let fp = bellerophon::<f64, { STANDARD }>(&num, false);
(fp.exp, fp.mant)
}
|