1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
This patch is based on the upstream commit described below, adapted
for use in the Debian package by Peter Michael Green.
commit 67ad0177d1efddfb4f5e7d6c451a9202a7ff2158
Author: Violeta Hernández <eric.ivan.hdz@gmail.com>
Date: Wed Jun 9 23:36:49 2021 -0500
Bump `arrayvec` to 0.7
only in patch2:
Index: lyon-geom/src/cubic_bezier.rs
===================================================================
--- lyon-geom.orig/src/cubic_bezier.rs
+++ lyon-geom/src/cubic_bezier.rs
@@ -70,7 +70,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// Return the parameter values corresponding to a given x coordinate.
/// See also solve_t_for_x for monotonic curves.
- pub fn solve_t_for_x(&self, x: S) -> ArrayVec<[S; 3]> {
+ pub fn solve_t_for_x(&self, x: S) -> ArrayVec<S, 3> {
if self.is_a_point(S::ZERO)
|| (self.non_point_is_linear(S::ZERO) && self.from.x == self.to.x)
{
@@ -82,7 +82,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// Return the parameter values corresponding to a given y coordinate.
/// See also solve_t_for_y for monotonic curves.
- pub fn solve_t_for_y(&self, y: S) -> ArrayVec<[S; 3]> {
+ pub fn solve_t_for_y(&self, y: S) -> ArrayVec<S, 3> {
if self.is_a_point(S::ZERO)
|| (self.non_point_is_linear(S::ZERO) && self.from.y == self.to.y)
{
@@ -99,7 +99,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
ctrl1: S,
ctrl2: S,
to: S,
- ) -> ArrayVec<[S; 3]> {
+ ) -> ArrayVec<S, 3> {
let mut result = ArrayVec::new();
let a = -from + S::THREE * ctrl1 - S::THREE * ctrl2 + to;
@@ -321,10 +321,10 @@ impl<S: Scalar> CubicBezierSegment<S> {
where
F: FnMut(S),
{
- let mut x_extrema: ArrayVec<[S; 3]> = ArrayVec::new();
+ let mut x_extrema: ArrayVec<S, 3> = ArrayVec::new();
self.for_each_local_x_extremum_t(&mut|t| { x_extrema.push(t) });
- let mut y_extrema: ArrayVec<[S; 3]> = ArrayVec::new();
+ let mut y_extrema: ArrayVec<S, 3> = ArrayVec::new();
self.for_each_local_y_extremum_t(&mut|t| { y_extrema.push(t) });
let mut it_x = x_extrema.iter().cloned();
@@ -654,15 +654,15 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// but not endpoint/endpoint intersections.
///
/// Returns no intersections if either curve is a point.
- pub fn cubic_intersections_t(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<[(S, S); 9]> {
+ pub fn cubic_intersections_t(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<(S, S), 9> {
cubic_bezier_intersections_t(self, curve)
}
/// Computes the intersection points (if any) between this segment and another one.
- pub fn cubic_intersections(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<[Point<S>; 9]> {
+ pub fn cubic_intersections(&self, curve: &CubicBezierSegment<S>) -> ArrayVec<Point<S>, 9> {
let intersections = self.cubic_intersections_t(curve);
- let mut result_with_repeats = ArrayVec::<[_; 9]>::new();
+ let mut result_with_repeats = ArrayVec::<_, 9>::new();
for (t, _) in intersections {
result_with_repeats.push(self.sample(t));
}
@@ -718,12 +718,12 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// but not endpoint/endpoint intersections.
///
/// Returns no intersections if either curve is a point.
- pub fn quadratic_intersections_t(&self, curve: &QuadraticBezierSegment<S>) -> ArrayVec<[(S, S); 9]> {
+ pub fn quadratic_intersections_t(&self, curve: &QuadraticBezierSegment<S>) -> ArrayVec<(S, S), 9> {
self.cubic_intersections_t(&curve.to_cubic())
}
/// Computes the intersection points (if any) between this segment and a quadratic bézier segment.
- pub fn quadratic_intersections(&self, curve: &QuadraticBezierSegment<S>) -> ArrayVec<[Point<S>; 9]> {
+ pub fn quadratic_intersections(&self, curve: &QuadraticBezierSegment<S>) -> ArrayVec<Point<S>, 9> {
self.cubic_intersections(&curve.to_cubic())
}
@@ -732,7 +732,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// The result is provided in the form of the `t` parameters of each
/// point along curve. To get the intersection points, sample the curve
/// at the corresponding values.
- pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<[S; 3]> {
+ pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<S, 3> {
if line.vector.square_length() < S::EPSILON {
return ArrayVec::new();
}
@@ -768,7 +768,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
}
/// Computes the intersection points (if any) between this segment and a line.
- pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<[Point<S>; 3]> {
+ pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<Point<S>, 3> {
let intersections = self.line_intersections_t(&line);
let mut result = ArrayVec::new();
@@ -784,7 +784,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
/// The result is provided in the form of the `t` parameters of each
/// point along curve and segment. To get the intersection points, sample
/// the segments at the corresponding values.
- pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<[(S, S); 3]> {
+ pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<(S, S), 3> {
if !self.fast_bounding_rect().intersects(&segment.bounding_rect()) {
return ArrayVec::new();
}
@@ -821,7 +821,7 @@ impl<S: Scalar> CubicBezierSegment<S> {
#[inline]
pub fn to(&self) -> Point<S> { self.to }
- pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<[Point<S>; 3]> {
+ pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<Point<S>, 3> {
let intersections = self.line_segment_intersections_t(&segment);
let mut result = ArrayVec::new();
@@ -1106,7 +1106,7 @@ fn test_monotonic() {
#[test]
fn test_line_segment_intersections() {
use crate::math::point;
- fn assert_approx_eq(a: ArrayVec<[(f32, f32); 3]>, b: &[(f32, f32)], epsilon: f32) {
+ fn assert_approx_eq(a: ArrayVec<(f32, f32), 3>, b: &[(f32, f32)], epsilon: f32) {
for i in 0..a.len() {
if f32::abs(a[i].0 - b[i].0) > epsilon || f32::abs(a[i].1 - b[i].1) > epsilon {
println!("{:?} != {:?}", a, b);
@@ -1142,7 +1142,7 @@ fn test_line_segment_intersections() {
#[test]
fn test_parameters_for_value() {
use crate::math::point;
- fn assert_approx_eq(a: ArrayVec<[f32; 3]>, b: &[f32], epsilon: f32) {
+ fn assert_approx_eq(a: ArrayVec<f32, 3>, b: &[f32], epsilon: f32) {
for i in 0..a.len() {
if f32::abs(a[i] - b[i]) > epsilon {
println!("{:?} != {:?}", a, b);
Index: lyon-geom/src/cubic_bezier_intersections.rs
===================================================================
--- lyon-geom.orig/src/cubic_bezier_intersections.rs
+++ lyon-geom/src/cubic_bezier_intersections.rs
@@ -23,7 +23,7 @@ use std::ops::Range;
pub fn cubic_bezier_intersections_t<S: Scalar>(
curve1: &CubicBezierSegment<S>,
curve2: &CubicBezierSegment<S>,
-) -> ArrayVec<[(S, S); 9]> {
+) -> ArrayVec<(S, S), 9> {
if !curve1.fast_bounding_rect().intersects(&curve2.fast_bounding_rect())
|| curve1 == curve2
|| (curve1.from == curve2.to
@@ -89,7 +89,7 @@ fn point_curve_intersections<S: Scalar>(
pt: &Point<S>,
curve: &CubicBezierSegment<S>,
epsilon: S,
-) -> ArrayVec<[S; 9]> {
+) -> ArrayVec<S, 9> {
let mut result = ArrayVec::new();
// (If both endpoints are epsilon close, we only return S::ZERO.)
@@ -139,7 +139,7 @@ fn point_curve_intersections<S: Scalar>(
// diagonally just outside the hull. This is a rare case (could we even ignore it?).
#[inline]
fn maybe_add<S: Scalar>(t: S, pt: &Point<S>, curve: &CubicBezierSegment<S>, epsilon: S,
- result: &mut ArrayVec<[S; 9]>) -> bool
+ result: &mut ArrayVec<S, 9>) -> bool
{
if (curve.sample(t) - *pt).square_length() < epsilon {
result.push(t);
@@ -160,7 +160,7 @@ fn line_curve_intersections<S: Scalar>(
line_as_curve: &CubicBezierSegment<S>,
curve: &CubicBezierSegment<S>,
flip: bool,
-) -> ArrayVec<[(S, S); 9]> {
+) -> ArrayVec<(S, S), 9> {
let mut result = ArrayVec::new();
let baseline = line_as_curve.baseline();
let curve_intersections = curve.line_intersections_t(&baseline.to_line());
@@ -186,7 +186,7 @@ fn line_curve_intersections<S: Scalar>(
fn line_line_intersections<S: Scalar>(
curve1: &CubicBezierSegment<S>,
curve2: &CubicBezierSegment<S>,
-) -> ArrayVec<[(S, S); 9]> {
+) -> ArrayVec<(S, S), 9> {
let mut result = ArrayVec::new();
let intersection = curve1.baseline().to_line().intersection(&curve2.baseline().to_line());
@@ -200,7 +200,7 @@ fn line_line_intersections<S: Scalar>(
fn parameters_for_line_point<S: Scalar>(
curve: &CubicBezierSegment<S>,
pt: &Point<S>,
- ) -> ArrayVec<[S; 3]> {
+ ) -> ArrayVec<S, 3> {
let line_is_mostly_vertical =
S::abs(curve.from.y - curve.to.y) >= S::abs(curve.from.x - curve.to.x);
if line_is_mostly_vertical {
@@ -245,7 +245,7 @@ fn add_curve_intersections<S: Scalar>(
curve2: &CubicBezierSegment<S>,
domain1: &Range<S>,
domain2: &Range<S>,
- intersections: &mut ArrayVec<[(S, S); 9]>,
+ intersections: &mut ArrayVec<(S, S), 9>,
flip: bool,
mut recursion_count: u32,
mut call_count: u32,
@@ -388,7 +388,7 @@ fn add_point_curve_intersection<S: Scala
curve: &CubicBezierSegment<S>,
pt_domain: &Range<S>,
curve_domain: &Range<S>,
- intersections: &mut ArrayVec<[(S, S); 9]>,
+ intersections: &mut ArrayVec<(S, S), 9>,
flip: bool,
) {
let pt = pt_curve.from;
@@ -466,7 +466,7 @@ fn add_intersection<S: Scalar>(
t2: S,
orig_curve2: &CubicBezierSegment<S>,
flip: bool,
- intersections: &mut ArrayVec<[(S, S); 9]>,
+ intersections: &mut ArrayVec<(S, S), 9>,
) {
let (t1, t2) = if flip { (t2, t1) } else { (t1, t2) };
// (This should probably depend in some way on how large our input coefficients are.)
Index: lyon-geom/src/monotonic.rs
===================================================================
--- lyon-geom.orig/src/monotonic.rs
+++ lyon-geom/src/monotonic.rs
@@ -128,7 +128,7 @@ impl<S: Scalar> Monotonic<QuadraticBezie
&self, self_t_range: Range<S>,
other: &Self, other_t_range: Range<S>,
tolerance: S,
- ) -> ArrayVec<[(S, S);2]> {
+ ) -> ArrayVec<(S, S),2> {
monotonic_segment_intersecions(
self, self_t_range,
other, other_t_range,
@@ -140,7 +140,7 @@ impl<S: Scalar> Monotonic<QuadraticBezie
&self, self_t_range: Range<S>,
other: &Self, other_t_range: Range<S>,
tolerance: S,
- ) -> ArrayVec<[Point<S>;2]> {
+ ) -> ArrayVec<Point<S>,2> {
let intersections = monotonic_segment_intersecions(
self, self_t_range,
other, other_t_range,
@@ -348,7 +348,7 @@ pub(crate) fn monotonic_segment_intersec
a: &A, a_t_range: Range<S>,
b: &B, b_t_range: Range<S>,
tolerance: S,
-) -> ArrayVec<[(S, S); 2]>
+) -> ArrayVec<(S, S), 2>
where
A: Segment<Scalar=S> + MonotonicSegment<Scalar=S> + BoundingRect<Scalar=S>,
B: Segment<Scalar=S> + MonotonicSegment<Scalar=S> + BoundingRect<Scalar=S>,
Index: lyon-geom/src/quadratic_bezier.rs
===================================================================
--- lyon-geom.orig/src/quadratic_bezier.rs
+++ lyon-geom/src/quadratic_bezier.rs
@@ -444,7 +444,7 @@ impl<S: Scalar> QuadraticBezierSegment<S
/// The result is provided in the form of the `t` parameters of each
/// point along curve. To get the intersection points, sample the curve
/// at the corresponding values.
- pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<[S; 2]> {
+ pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<S, 2> {
// TODO: a specific quadratic bézier vs line intersection function
// would allow for better performance.
let intersections = self.to_cubic().line_intersections_t(line);
@@ -458,7 +458,7 @@ impl<S: Scalar> QuadraticBezierSegment<S
}
/// Computes the intersection points (if any) between this segment a line.
- pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<[Point<S>;2]> {
+ pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<Point<S>,2> {
let intersections = self.to_cubic().line_intersections_t(line);
let mut result = ArrayVec::new();
@@ -474,7 +474,7 @@ impl<S: Scalar> QuadraticBezierSegment<S
/// The result is provided in the form of the `t` parameters of each
/// point along curve and segment. To get the intersection points, sample
/// the segments at the corresponding values.
- pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<[(S, S); 2]> {
+ pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<(S, S), 2> {
// TODO: a specific quadratic bézier vs line intersection function
// would allow for better performance.
let intersections = self.to_cubic().line_segment_intersections_t(&segment);
@@ -495,7 +495,7 @@ impl<S: Scalar> QuadraticBezierSegment<S
pub fn to(&self) -> Point<S> { self.to }
/// Computes the intersection points (if any) between this segment a line segment.
- pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<[Point<S>; 2]> {
+ pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<Point<S>, 2> {
let intersections = self.to_cubic().line_segment_intersections_t(&segment);
assert!(intersections.len() <= 2);
Index: lyon-geom/src/utils.rs
===================================================================
--- lyon-geom.orig/src/utils.rs
+++ lyon-geom/src/utils.rs
@@ -50,7 +50,7 @@ pub fn directed_angle2<S: Scalar>(center
directed_angle(a - center, b - center)
}
-pub fn cubic_polynomial_roots<S: Scalar>(a: S, b: S, c: S, d: S) -> ArrayVec<[S; 3]> {
+pub fn cubic_polynomial_roots<S: Scalar>(a: S, b: S, c: S, d: S) -> ArrayVec<S, 3> {
let mut result = ArrayVec::new();
if S::abs(a) < S::EPSILON {
@@ -112,7 +112,7 @@ pub fn cubic_polynomial_roots<S: Scalar>
#[test]
fn cubic_polynomial() {
- fn assert_approx_eq(a: ArrayVec<[f32; 3]>, b: &[f32], epsilon: f32) {
+ fn assert_approx_eq(a: ArrayVec<f32, 3>, b: &[f32], epsilon: f32) {
for i in 0..a.len() {
if f32::abs(a[i] - b[i]) > epsilon {
println!("{:?} != {:?}", a, b);
Index: lyon-geom/Cargo.toml
===================================================================
--- lyon-geom.orig/Cargo.toml
+++ lyon-geom/Cargo.toml
@@ -24,7 +24,7 @@ repository = "https://github.com/nical/l
[lib]
name = "lyon_geom"
[dependencies.arrayvec]
-version = "0.5"
+version = "0.7"
[dependencies.euclid]
version = "0.20.0"
Index: lyon-geom/src/cubic_to_quadratic.rs
===================================================================
--- lyon-geom.orig/src/cubic_to_quadratic.rs
+++ lyon-geom/src/cubic_to_quadratic.rs
@@ -95,7 +95,7 @@ fn make_monotonic<S: Scalar>(curve: &Qua
/*
pub struct MonotonicQuadraticBezierSegments<S> {
curve: CubicBezierSegment<S>,
- splits: ArrayVec<[S; 4]>,
+ splits: ArrayVec<S, 4>,
t0: S,
idx: u8,
}
Index: lyon-geom/src/flatten_cubic.rs
===================================================================
--- lyon-geom.orig/src/flatten_cubic.rs
+++ lyon-geom/src/flatten_cubic.rs
@@ -30,7 +30,7 @@ impl<S: Scalar> Flattened<S> {
/// Creates an iterator that yields points along a cubic bezier segment, useful to build a
/// flattened approximation of the curve given a certain tolerance.
pub fn new(bezier: CubicBezierSegment<S>, tolerance: S) -> Self {
- let mut inflections: ArrayVec<[S; 2]> = ArrayVec::new();
+ let mut inflections: ArrayVec<S, 2> = ArrayVec::new();
find_cubic_bezier_inflection_points(&bezier, &mut|t| { inflections.push(t); });
let mut iter = Flattened {
@@ -121,7 +121,7 @@ pub fn flatten_cubic_bezier<S: Scalar, F
tolerance: S,
call_back: &mut F,
) {
- let mut inflections: ArrayVec<[S; 2]> = ArrayVec::new();
+ let mut inflections: ArrayVec<S, 2> = ArrayVec::new();
find_cubic_bezier_inflection_points(&bezier, &mut|t| { inflections.push(t); });
if let Some(&t1) = inflections.get(0) {
@@ -142,7 +142,7 @@ pub fn flatten_cubic_bezier_with_t<S: Sc
tolerance: S,
call_back: &mut F,
) {
- let mut inflections: ArrayVec<[S; 2]> = ArrayVec::new();
+ let mut inflections: ArrayVec<S, 2> = ArrayVec::new();
find_cubic_bezier_inflection_points(&bezier, &mut|t| { inflections.push(t); });
let mut t = S::ZERO;
|