1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
#[cfg(target_arch="aarch64")]
struct KernelArmNeon;
#[cfg(target_arch="aarch64")]
impl GemmKernel for KernelArmNeon {
type Elem = T;
type MRTy = U4;
type NRTy = U4;
#[inline(always)]
fn align_to() -> usize { 16 }
#[inline(always)]
fn always_masked() -> bool { false }
#[inline(always)]
fn nc() -> usize { archparam::S_NC }
#[inline(always)]
fn kc() -> usize { archparam::S_KC }
#[inline(always)]
fn mc() -> usize { archparam::S_MC }
#[inline(always)]
unsafe fn kernel(
k: usize,
alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T, rsc: isize, csc: isize) {
kernel_target_arm_neon(k, alpha, a, b, beta, c, rsc, csc)
}
}
// 4x4 neon kernel unrolled developed for apple silicon M1
#[cfg(target_arch="aarch64")]
#[target_feature(enable="neon")]
unsafe fn kernel_target_arm_neon(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
{
use core::arch::aarch64::*;
const MR: usize = KernelArmNeon::MR;
const NR: usize = KernelArmNeon::NR;
let (mut a, mut b, rsc, csc) = if rsc == 1 { (b, a, csc, rsc) } else { (a, b, rsc, csc) };
let mut ab = [vmovq_n_f32(0.); MR];
let mut ab2 = [vmovq_n_f32(0.); MR];
let mut ab3 = [vmovq_n_f32(0.); MR];
let mut ab4 = [vmovq_n_f32(0.); MR];
let use_fma = true;
// Compute
// ab_ij = a_i * b_j for all i, j
macro_rules! ab_ij_equals_ai_bj {
($dest:ident, $av:expr, $bv:expr) => {
if use_fma {
$dest[0] = vfmaq_laneq_f32($dest[0], $bv, $av, 0);
$dest[1] = vfmaq_laneq_f32($dest[1], $bv, $av, 1);
$dest[2] = vfmaq_laneq_f32($dest[2], $bv, $av, 2);
$dest[3] = vfmaq_laneq_f32($dest[3], $bv, $av, 3);
} else {
$dest[0] = vaddq_f32($dest[0], vmulq_laneq_f32($bv, $av, 0));
$dest[1] = vaddq_f32($dest[1], vmulq_laneq_f32($bv, $av, 1));
$dest[2] = vaddq_f32($dest[2], vmulq_laneq_f32($bv, $av, 2));
$dest[3] = vaddq_f32($dest[3], vmulq_laneq_f32($bv, $av, 3));
}
}
}
const UNROLL_BY: usize = 4;
for _ in 0..k / UNROLL_BY {
let av = vld1q_f32(a);
let bv = vld1q_f32(b);
// eprintln!("a: {av:?}");
// eprintln!("b: {bv:?}");
// FMLA instruction
// Cortex 7A: FMA has 7 cycles latency or 3 cycles when the dependency is on the accumulator
// M1: Latency 3, throughput 0.25
ab_ij_equals_ai_bj!(ab, av, bv);
let av = vld1q_f32(a.add(4));
let bv = vld1q_f32(b.add(4));
ab_ij_equals_ai_bj!(ab2, av, bv);
if UNROLL_BY > 2 {
let av = vld1q_f32(a.add(8));
let bv = vld1q_f32(b.add(8));
ab_ij_equals_ai_bj!(ab3, av, bv);
let av = vld1q_f32(a.add(12));
let bv = vld1q_f32(b.add(12));
ab_ij_equals_ai_bj!(ab4, av, bv);
}
a = a.offset(UNROLL_BY as isize * MR as isize);
b = b.offset(UNROLL_BY as isize * NR as isize);
}
for _ in 0..k % UNROLL_BY {
let av = vld1q_f32(a);
let bv = vld1q_f32(b);
ab_ij_equals_ai_bj!(ab, av, bv);
a = a.offset(MR as isize);
b = b.offset(NR as isize);
}
macro_rules! c {
($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
}
macro_rules! extract {
($v:expr, $imm:expr) => (
f32::from_bits(vgetq_lane_u32(core::mem::transmute::<_, uint32x4_t>($v), $imm))
)
}
// Combine accumulators and multiply by alpha
loop4!(i, ab[i] = vaddq_f32(vaddq_f32(ab[i], ab2[i]), vaddq_f32(ab3[i], ab4[i])));
loop4!(i, ab[i] = vmulq_n_f32(ab[i], alpha));
if beta == 0. {
// set C = α A B
if csc == 1 {
loop4!(i, vst1q_f32(c![i, 0], ab[i]));
} else {
loop4!(i, vst1q_lane_f32(c![i, 0], ab[i], 0));
loop4!(i, vst1q_lane_f32(c![i, 1], ab[i], 1));
loop4!(i, vst1q_lane_f32(c![i, 2], ab[i], 2));
loop4!(i, vst1q_lane_f32(c![i, 3], ab[i], 3));
}
} else {
// set C = α A B + beta C
loop4!(i, *c![i, 0] = *c![i, 0] * beta + extract!(ab[i], 0));
loop4!(i, *c![i, 1] = *c![i, 1] * beta + extract!(ab[i], 1));
loop4!(i, *c![i, 2] = *c![i, 2] * beta + extract!(ab[i], 2));
loop4!(i, *c![i, 3] = *c![i, 3] * beta + extract!(ab[i], 3));
}
}
|