File: aarch64_neon_4x4.rs

package info (click to toggle)
rust-matrixmultiply 0.3.9-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 436 kB
  • sloc: python: 86; sh: 11; makefile: 2
file content (150 lines) | stat: -rw-r--r-- 4,557 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#[cfg(target_arch="aarch64")]
struct KernelArmNeon;

#[cfg(target_arch="aarch64")]
impl GemmKernel for KernelArmNeon {
    type Elem = T;

    type MRTy = U4;
    type NRTy = U4;

    #[inline(always)]
    fn align_to() -> usize { 16 }

    #[inline(always)]
    fn always_masked() -> bool { false }

    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T, rsc: isize, csc: isize) {
        kernel_target_arm_neon(k, alpha, a, b, beta, c, rsc, csc)
    }
}

// 4x4 neon kernel unrolled developed for apple silicon M1
#[cfg(target_arch="aarch64")]
#[target_feature(enable="neon")]
unsafe fn kernel_target_arm_neon(k: usize, alpha: T, a: *const T, b: *const T,
                                 beta: T, c: *mut T, rsc: isize, csc: isize)
{
    use core::arch::aarch64::*;
    const MR: usize = KernelArmNeon::MR;
    const NR: usize = KernelArmNeon::NR;

    let (mut a, mut b, rsc, csc) = if rsc == 1 { (b, a, csc, rsc) } else { (a, b, rsc, csc) };

    let mut ab = [vmovq_n_f32(0.); MR];
    let mut ab2 = [vmovq_n_f32(0.); MR];
    let mut ab3 = [vmovq_n_f32(0.); MR];
    let mut ab4 = [vmovq_n_f32(0.); MR];
    let use_fma = true;

    // Compute
    // ab_ij = a_i * b_j for all i, j
    macro_rules! ab_ij_equals_ai_bj {
        ($dest:ident, $av:expr, $bv:expr) => {
            if use_fma {
                $dest[0] = vfmaq_laneq_f32($dest[0], $bv, $av, 0);
                $dest[1] = vfmaq_laneq_f32($dest[1], $bv, $av, 1);
                $dest[2] = vfmaq_laneq_f32($dest[2], $bv, $av, 2);
                $dest[3] = vfmaq_laneq_f32($dest[3], $bv, $av, 3);
            } else {
                $dest[0] = vaddq_f32($dest[0], vmulq_laneq_f32($bv, $av, 0));
                $dest[1] = vaddq_f32($dest[1], vmulq_laneq_f32($bv, $av, 1));
                $dest[2] = vaddq_f32($dest[2], vmulq_laneq_f32($bv, $av, 2));
                $dest[3] = vaddq_f32($dest[3], vmulq_laneq_f32($bv, $av, 3));
            }
        }
    }

    const UNROLL_BY: usize = 4;

    for _ in 0..k / UNROLL_BY {
        let av = vld1q_f32(a);
        let bv = vld1q_f32(b);
        // eprintln!("a: {av:?}");
        // eprintln!("b: {bv:?}");

        // FMLA instruction
        // Cortex 7A: FMA has 7 cycles latency or 3 cycles when the dependency is on the accumulator
        // M1: Latency 3, throughput 0.25
        ab_ij_equals_ai_bj!(ab, av, bv);

        let av = vld1q_f32(a.add(4));
        let bv = vld1q_f32(b.add(4));

        ab_ij_equals_ai_bj!(ab2, av, bv);

        if UNROLL_BY > 2 {

        let av = vld1q_f32(a.add(8));
        let bv = vld1q_f32(b.add(8));

        ab_ij_equals_ai_bj!(ab3, av, bv);

        let av = vld1q_f32(a.add(12));
        let bv = vld1q_f32(b.add(12));

        ab_ij_equals_ai_bj!(ab4, av, bv);

        }

        a = a.offset(UNROLL_BY as isize * MR as isize);
        b = b.offset(UNROLL_BY as isize * NR as isize);
    }

    for _ in 0..k % UNROLL_BY {
        let av = vld1q_f32(a);
        let bv = vld1q_f32(b);

        ab_ij_equals_ai_bj!(ab, av, bv);

        a = a.offset(MR as isize);
        b = b.offset(NR as isize);
    }

    macro_rules! c {
        ($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
    }

    macro_rules! extract {
        ($v:expr, $imm:expr) => (
            f32::from_bits(vgetq_lane_u32(core::mem::transmute::<_, uint32x4_t>($v), $imm))
        )
    }

    // Combine accumulators and multiply by alpha
    loop4!(i, ab[i] = vaddq_f32(vaddq_f32(ab[i], ab2[i]), vaddq_f32(ab3[i], ab4[i])));
    loop4!(i, ab[i] = vmulq_n_f32(ab[i], alpha));

    if beta == 0. {
        // set C = α A B
        if csc == 1 {
            loop4!(i, vst1q_f32(c![i, 0], ab[i]));
        } else {
            loop4!(i, vst1q_lane_f32(c![i, 0], ab[i], 0));
            loop4!(i, vst1q_lane_f32(c![i, 1], ab[i], 1));
            loop4!(i, vst1q_lane_f32(c![i, 2], ab[i], 2));
            loop4!(i, vst1q_lane_f32(c![i, 3], ab[i], 3));
        }
    } else {
        // set C = α A B + beta C
        loop4!(i, *c![i, 0] = *c![i, 0] * beta + extract!(ab[i], 0));
        loop4!(i, *c![i, 1] = *c![i, 1] * beta + extract!(ab[i], 1));
        loop4!(i, *c![i, 2] = *c![i, 2] * beta + extract!(ab[i], 2));
        loop4!(i, *c![i, 3] = *c![i, 3] * beta + extract!(ab[i], 3));
    }
}