File: unit_complex.rs

package info (click to toggle)
rust-nalgebra 0.33.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,340 kB
  • sloc: makefile: 2
file content (161 lines) | stat: -rw-r--r-- 4,812 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#![cfg(feature = "proptest-support")]
#![allow(non_snake_case)]

use na::{Unit, UnitComplex};

use crate::proptest::*;
use proptest::{prop_assert, proptest};

proptest!(
    /*
     *
     * From/to rotation matrix.
     *
     */
    #[test]
    fn unit_complex_rotation_conversion(c in unit_complex()) {
        let r = c.to_rotation_matrix();
        let cc = UnitComplex::from_rotation_matrix(&r);
        let rr = cc.to_rotation_matrix();

        prop_assert!(relative_eq!(c, cc, epsilon = 1.0e-7));
        prop_assert!(relative_eq!(r, rr, epsilon = 1.0e-7));
    }

    /*
     *
     * Point/Vector transformation.
     *
     */
    #[test]
    fn unit_complex_transformation(c in unit_complex(), v in vector2(), p in point2()) {
        let r = c.to_rotation_matrix();
        let rv = r * v;
        let rp = r * p;

        prop_assert!(relative_eq!(c * v, rv, epsilon = 1.0e-7)
            && relative_eq!(c * &v, rv, epsilon = 1.0e-7)
            && relative_eq!(&c * v, rv, epsilon = 1.0e-7)
            && relative_eq!(&c * &v, rv, epsilon = 1.0e-7)
            && relative_eq!(c * p, rp, epsilon = 1.0e-7)
            && relative_eq!(c * &p, rp, epsilon = 1.0e-7)
            && relative_eq!(&c * p, rp, epsilon = 1.0e-7)
            && relative_eq!(&c * &p, rp, epsilon = 1.0e-7))
    }

    /*
     *
     * Inversion.
     *
     */
    #[test]
    fn unit_complex_inv(c in unit_complex()) {
        let iq = c.inverse();
        prop_assert!(relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
            && relative_eq!(c * iq, UnitComplex::identity(), epsilon = 1.0e-7))
    }

    /*
     *
     * Quaternion * Vector == Rotation * Vector
     *
     */
    #[test]
    fn unit_complex_mul_vector(c in unit_complex(), v in vector2(), p in point2()) {
        let r = c.to_rotation_matrix();

        prop_assert!(relative_eq!(c * v, r * v, epsilon = 1.0e-7));
        prop_assert!(relative_eq!(c * p, r * p, epsilon = 1.0e-7));
    }

    // Test that all operators (incl. all combinations of references) work.
    // See the top comment on `geometry/quaternion_ops.rs` for details on which operations are
    // supported.
    #[test]
    #[cfg_attr(rustfmt, rustfmt_skip)]
    fn all_op_exist(
        uc in unit_complex(),
        v in vector2(),
        p in point2(),
        r in rotation2()
    ) {
        let uv = Unit::new_normalize(v);

        let ucMuc = uc * uc;
        let ucMr = uc * r;
        let rMuc = r * uc;
        let ucDuc = uc / uc;
        let ucDr = uc / r;
        let rDuc = r / uc;

        let ucMp = uc * p;
        let ucMv = uc * v;
        let ucMuv = uc * uv;

        let mut ucMuc1 = uc;
        let mut ucMuc2 = uc;

        let mut ucMr1 = uc;
        let mut ucMr2 = uc;

        let mut ucDuc1 = uc;
        let mut ucDuc2 = uc;

        let mut ucDr1 = uc;
        let mut ucDr2 = uc;

        ucMuc1 *= uc;
        ucMuc2 *= &uc;

        ucMr1 *= r;
        ucMr2 *= &r;

        ucDuc1 /= uc;
        ucDuc2 /= &uc;

        ucDr1 /= r;
        ucDr2 /= &r;

        prop_assert!(ucMuc1 == ucMuc
            && ucMuc1 == ucMuc2
            && ucMr1 == ucMr
            && ucMr1 == ucMr2
            && ucDuc1 == ucDuc
            && ucDuc1 == ucDuc2
            && ucDr1 == ucDr
            && ucDr1 == ucDr2
            && ucMuc == &uc * &uc
            && ucMuc == uc * &uc
            && ucMuc == &uc * uc
            && ucMr == &uc * &r
            && ucMr == uc * &r
            && ucMr == &uc * r
            && rMuc == &r * &uc
            && rMuc == r * &uc
            && rMuc == &r * uc
            && ucDuc == &uc / &uc
            && ucDuc == uc / &uc
            && ucDuc == &uc / uc
            && ucDr == &uc / &r
            && ucDr == uc / &r
            && ucDr == &uc / r
            && rDuc == &r / &uc
            && rDuc == r / &uc
            && rDuc == &r / uc
            && ucMp == &uc * &p
            && ucMp == uc * &p
            && ucMp == &uc * p
            && ucMv == &uc * &v
            && ucMv == uc * &v
            && ucMv == &uc * v
            && ucMuv == &uc * &uv
            && ucMuv == uc * &uv
            && ucMuv == &uc * uv)
    }
);