1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#![cfg(feature = "proptest-support")]
#![allow(non_snake_case)]
use na::{Unit, UnitComplex};
use crate::proptest::*;
use proptest::{prop_assert, proptest};
proptest!(
/*
*
* From/to rotation matrix.
*
*/
#[test]
fn unit_complex_rotation_conversion(c in unit_complex()) {
let r = c.to_rotation_matrix();
let cc = UnitComplex::from_rotation_matrix(&r);
let rr = cc.to_rotation_matrix();
prop_assert!(relative_eq!(c, cc, epsilon = 1.0e-7));
prop_assert!(relative_eq!(r, rr, epsilon = 1.0e-7));
}
/*
*
* Point/Vector transformation.
*
*/
#[test]
fn unit_complex_transformation(c in unit_complex(), v in vector2(), p in point2()) {
let r = c.to_rotation_matrix();
let rv = r * v;
let rp = r * p;
prop_assert!(relative_eq!(c * v, rv, epsilon = 1.0e-7)
&& relative_eq!(c * &v, rv, epsilon = 1.0e-7)
&& relative_eq!(&c * v, rv, epsilon = 1.0e-7)
&& relative_eq!(&c * &v, rv, epsilon = 1.0e-7)
&& relative_eq!(c * p, rp, epsilon = 1.0e-7)
&& relative_eq!(c * &p, rp, epsilon = 1.0e-7)
&& relative_eq!(&c * p, rp, epsilon = 1.0e-7)
&& relative_eq!(&c * &p, rp, epsilon = 1.0e-7))
}
/*
*
* Inversion.
*
*/
#[test]
fn unit_complex_inv(c in unit_complex()) {
let iq = c.inverse();
prop_assert!(relative_eq!(&iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(iq * &c, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(&iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(iq * c, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(&c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(c * &iq, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(&c * iq, UnitComplex::identity(), epsilon = 1.0e-7)
&& relative_eq!(c * iq, UnitComplex::identity(), epsilon = 1.0e-7))
}
/*
*
* Quaternion * Vector == Rotation * Vector
*
*/
#[test]
fn unit_complex_mul_vector(c in unit_complex(), v in vector2(), p in point2()) {
let r = c.to_rotation_matrix();
prop_assert!(relative_eq!(c * v, r * v, epsilon = 1.0e-7));
prop_assert!(relative_eq!(c * p, r * p, epsilon = 1.0e-7));
}
// Test that all operators (incl. all combinations of references) work.
// See the top comment on `geometry/quaternion_ops.rs` for details on which operations are
// supported.
#[test]
#[cfg_attr(rustfmt, rustfmt_skip)]
fn all_op_exist(
uc in unit_complex(),
v in vector2(),
p in point2(),
r in rotation2()
) {
let uv = Unit::new_normalize(v);
let ucMuc = uc * uc;
let ucMr = uc * r;
let rMuc = r * uc;
let ucDuc = uc / uc;
let ucDr = uc / r;
let rDuc = r / uc;
let ucMp = uc * p;
let ucMv = uc * v;
let ucMuv = uc * uv;
let mut ucMuc1 = uc;
let mut ucMuc2 = uc;
let mut ucMr1 = uc;
let mut ucMr2 = uc;
let mut ucDuc1 = uc;
let mut ucDuc2 = uc;
let mut ucDr1 = uc;
let mut ucDr2 = uc;
ucMuc1 *= uc;
ucMuc2 *= &uc;
ucMr1 *= r;
ucMr2 *= &r;
ucDuc1 /= uc;
ucDuc2 /= &uc;
ucDr1 /= r;
ucDr2 /= &r;
prop_assert!(ucMuc1 == ucMuc
&& ucMuc1 == ucMuc2
&& ucMr1 == ucMr
&& ucMr1 == ucMr2
&& ucDuc1 == ucDuc
&& ucDuc1 == ucDuc2
&& ucDr1 == ucDr
&& ucDr1 == ucDr2
&& ucMuc == &uc * &uc
&& ucMuc == uc * &uc
&& ucMuc == &uc * uc
&& ucMr == &uc * &r
&& ucMr == uc * &r
&& ucMr == &uc * r
&& rMuc == &r * &uc
&& rMuc == r * &uc
&& rMuc == &r * uc
&& ucDuc == &uc / &uc
&& ucDuc == uc / &uc
&& ucDuc == &uc / uc
&& ucDr == &uc / &r
&& ucDr == uc / &r
&& ucDr == &uc / r
&& rDuc == &r / &uc
&& rDuc == r / &uc
&& rDuc == &r / uc
&& ucMp == &uc * &p
&& ucMp == uc * &p
&& ucMp == &uc * p
&& ucMv == &uc * &v
&& ucMv == uc * &v
&& ucMv == &uc * v
&& ucMuv == &uc * &uv
&& ucMuv == uc * &uv
&& ucMuv == &uc * uv)
}
);
|