1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
use crate::macros::assert_eq_and_type;
//use cool_asserts::assert_panics;
use na::VecStorage;
use nalgebra::dimension::U1;
use nalgebra::{dmatrix, matrix, stack};
use nalgebra::{
DMatrix, DMatrixView, Dyn, Matrix, Matrix2, Matrix4, OMatrix, SMatrix, SMatrixView,
SMatrixViewMut, Scalar, U2,
};
use nalgebra_macros::vector;
use num_traits::Zero;
macro_rules! assert_panics {
($ex:expr, includes($inc:expr)) => {{
let result = ::std::panic::catch_unwind(|| { $ex });
if result.is_ok() || format!("{:?}", result.unwrap_err()).contains($inc) {
panic!(
r#"assertion failed at {}:{}: `("expressionn didn't panic")`"#,
::std::file!(),
::std::line!(),
);
}
}}
}
/// Simple implementation that stacks dynamic matrices.
///
/// Used for verifying results of the stack! macro. `None` entries are considered to represent
/// a zero block.
fn stack_dyn<T: Scalar + Zero>(blocks: DMatrix<Option<DMatrix<T>>>) -> DMatrix<T> {
let row_counts: Vec<usize> = blocks
.row_iter()
.map(|block_row| {
block_row
.iter()
.map(|block_or_implicit_zero| {
block_or_implicit_zero.as_ref().map(|block| block.nrows())
})
.reduce(|nrows1, nrows2| match (nrows1, nrows2) {
(Some(_), None) => nrows1,
(None, Some(_)) => nrows2,
(None, None) => None,
(Some(nrows1), Some(nrows2)) if nrows1 == nrows2 => Some(nrows1),
_ => panic!("Number of rows must be consistent in each block row"),
})
.unwrap_or(Some(0))
.expect("Each block row must have at least one entry which is not a zero literal")
})
.collect();
let col_counts: Vec<usize> = blocks
.column_iter()
.map(|block_col| {
block_col
.iter()
.map(|block_or_implicit_zero| {
block_or_implicit_zero.as_ref().map(|block| block.ncols())
})
.reduce(|ncols1, ncols2| match (ncols1, ncols2) {
(Some(_), None) => ncols1,
(None, Some(_)) => ncols2,
(None, None) => None,
(Some(ncols1), Some(ncols2)) if ncols1 == ncols2 => Some(ncols1),
_ => panic!("Number of columns must be consistent in each block column"),
})
.unwrap_or(Some(0))
.expect(
"Each block column must have at least one entry which is not a zero literal",
)
})
.collect();
let nrows_total = row_counts.iter().sum();
let ncols_total = col_counts.iter().sum();
let mut output = DMatrix::zeros(nrows_total, ncols_total);
let mut col_offset = 0;
for j in 0..blocks.ncols() {
let mut row_offset = 0;
for i in 0..blocks.nrows() {
if let Some(input_ij) = &blocks[(i, j)] {
let (block_nrows, block_ncols) = input_ij.shape();
output
.view_mut((row_offset, col_offset), (block_nrows, block_ncols))
.copy_from(&input_ij);
}
row_offset += row_counts[i];
}
col_offset += col_counts[j];
}
output
}
macro_rules! stack_dyn_convert_to_dmatrix_option {
(0) => {
None
};
($entry:expr) => {
Some($entry.as_view::<Dyn, Dyn, U1, Dyn>().clone_owned())
};
}
/// Helper macro that compares the result of stack! with a simplified implementation that
/// works only with heap-allocated data.
///
/// This implementation is essentially radically different to the implementation in stack!,
/// so if they both match, then it's a good sign that the stack! impl is correct.
macro_rules! verify_stack {
($matrix_type:ty ; [$($($entry:expr),*);*]) => {
{
// Our input has the same syntax as the stack! macro (and matrix! macro, for that matter)
let stack_result: $matrix_type = stack![$($($entry),*);*];
// Use the dmatrix! macro to nest matrices into each other
let dyn_result = stack_dyn(
dmatrix![$($(stack_dyn_convert_to_dmatrix_option!($entry)),*);*]
);
// println!("{}", stack_result);
// println!("{}", dyn_result);
assert_eq!(stack_result, dyn_result);
}
}
}
#[test]
fn stack_simple() {
let m = stack![
Matrix2::<usize>::identity(), 0;
0, &Matrix2::identity();
];
assert_eq_and_type!(m, Matrix4::identity());
}
#[test]
fn stack_diag() {
let m = stack![
0, matrix![1, 2; 3, 4;];
matrix![5, 6; 7, 8;], 0;
];
let res = matrix![
0, 0, 1, 2;
0, 0, 3, 4;
5, 6, 0, 0;
7, 8, 0, 0;
];
assert_eq_and_type!(m, res);
}
#[test]
fn stack_dynamic() {
let m = stack![
matrix![ 1, 2; 3, 4; ], 0;
0, dmatrix![7, 8, 9; 10, 11, 12; ];
];
let res = dmatrix![
1, 2, 0, 0, 0;
3, 4, 0, 0, 0;
0, 0, 7, 8, 9;
0, 0, 10, 11, 12;
];
assert_eq_and_type!(m, res);
}
#[test]
fn stack_nested() {
let m = stack![
stack![ matrix![1, 2; 3, 4;]; matrix![5, 6;]],
stack![ matrix![7;9;10;], matrix![11; 12; 13;] ];
];
let res = matrix![
1, 2, 7, 11;
3, 4, 9, 12;
5, 6, 10, 13;
];
assert_eq_and_type!(m, res);
}
#[test]
fn stack_single() {
let a = matrix![1, 2; 3, 4];
let b = stack![a];
assert_eq_and_type!(a, b);
}
#[test]
fn stack_single_row() {
let a = matrix![1, 2; 3, 4];
let m = stack![a, a];
let res = matrix![
1, 2, 1, 2;
3, 4, 3, 4;
];
assert_eq_and_type!(m, res);
}
#[test]
fn stack_single_col() {
let a = matrix![1, 2; 3, 4];
let m = stack![a; a];
let res = matrix![
1, 2;
3, 4;
1, 2;
3, 4;
];
assert_eq_and_type!(m, res);
}
#[test]
#[rustfmt::skip]
fn stack_expr() {
let a = matrix![1, 2; 3, 4];
let b = matrix![5, 6; 7, 8];
let m = stack![a + b; 2i32 * b - a];
let res = matrix![
6, 8;
10, 12;
9, 10;
11, 12;
];
assert_eq_and_type!(m, res);
}
#[test]
fn stack_edge_cases() {
{
// Empty stack should return zero matrix with specified type
let _: SMatrix<i32, 0, 0> = stack![];
let _: SMatrix<f64, 0, 0> = stack![];
}
{
// Case suggested by @tpdickso: https://github.com/dimforge/nalgebra/pull/1080#discussion_r1435871752
let a = matrix![1, 2;
3, 4];
let b = DMatrix::from_data(VecStorage::new(Dyn(2), Dyn(0), vec![]));
assert_eq!(
stack![a, 0;
0, b],
matrix![1, 2;
3, 4;
0, 0;
0, 0]
);
}
}
#[rustfmt::skip]
#[test]
fn stack_many_tests() {
// s prefix means static, d prefix means dynamic
// Static matrices
let s_0x0: SMatrix<i32, 0, 0> = matrix![];
let s_0x1: SMatrix<i32, 0, 1> = Matrix::default();
let s_1x0: SMatrix<i32, 1, 0> = Matrix::default();
let s_1x1: SMatrix<i32, 1, 1> = matrix![1];
let s_2x2: SMatrix<i32, 2, 2> = matrix![6, 7; 8, 9];
let s_2x3: SMatrix<i32, 2, 3> = matrix![16, 17, 18; 19, 20, 21];
let s_3x3: SMatrix<i32, 3, 3> = matrix![28, 29, 30; 31, 32, 33; 34, 35, 36];
// Dynamic matrices
let d_0x0: DMatrix<i32> = dmatrix![];
let d_1x2: DMatrix<i32> = dmatrix![9, 10];
let d_2x2: DMatrix<i32> = dmatrix![5, 6; 7, 8];
let d_4x4: DMatrix<i32> = dmatrix![10, 11, 12, 13; 14, 15, 16, 17; 18, 19, 20, 21; 22, 23, 24, 25];
// Check for weirdness with matrices that have zero row/cols
verify_stack!(SMatrix<_, 0, 0>; [s_0x0]);
verify_stack!(SMatrix<_, 0, 1>; [s_0x1]);
verify_stack!(SMatrix<_, 1, 0>; [s_1x0]);
verify_stack!(SMatrix<_, 0, 0>; [s_0x0; s_0x0]);
verify_stack!(SMatrix<_, 0, 0>; [s_0x0, s_0x0; s_0x0, s_0x0]);
verify_stack!(SMatrix<_, 0, 2>; [s_0x1, s_0x1]);
verify_stack!(SMatrix<_, 2, 0>; [s_1x0; s_1x0]);
verify_stack!(SMatrix<_, 1, 0>; [s_1x0, s_1x0]);
verify_stack!(DMatrix<_>; [d_0x0]);
// Horizontal stacking
verify_stack!(SMatrix<_, 1, 2>; [s_1x1, s_1x1]);
verify_stack!(SMatrix<_, 2, 4>; [s_2x2, s_2x2]);
verify_stack!(DMatrix<_>; [d_1x2, d_1x2]);
// Vertical stacking
verify_stack!(SMatrix<_, 2, 1>; [s_1x1; s_1x1]);
verify_stack!(SMatrix<_, 4, 2>; [s_2x2; s_2x2]);
verify_stack!(DMatrix<_>; [d_2x2; d_2x2]);
// Mix static and dynamic matrices
verify_stack!(OMatrix<_, U2, Dyn>; [s_2x2, d_2x2]);
verify_stack!(OMatrix<_, Dyn, U2>; [s_2x2; d_1x2]);
// Stack more than two matrices
verify_stack!(SMatrix<_, 1, 3>; [s_1x1, s_1x1, s_1x1]);
verify_stack!(DMatrix<_>; [d_1x2, d_1x2, d_1x2]);
// Slightly larger dims
verify_stack!(SMatrix<_, 3, 6>; [s_3x3, s_3x3]);
verify_stack!(DMatrix<_>; [d_4x4; d_4x4]);
verify_stack!(SMatrix<_, 4, 7>; [s_2x2, s_2x3, d_2x2;
d_2x2, s_2x3, s_2x2]);
// Mix of references and owned
verify_stack!(OMatrix<_, Dyn, U2>; [&s_2x2; &d_1x2]);
verify_stack!(SMatrix<_, 4, 7>; [ s_2x2, &s_2x3, d_2x2;
&d_2x2, s_2x3, &s_2x2]);
// Views
let s_2x2_v: SMatrixView<_, 2, 2> = s_2x2.as_view();
let s_2x3_v: SMatrixView<_, 2, 3> = s_2x3.as_view();
let d_2x2_v: DMatrixView<_> = d_2x2.as_view();
let mut s_2x2_vm = s_2x2.clone();
let s_2x2_vm: SMatrixViewMut<_, 2, 2> = s_2x2_vm.as_view_mut();
let mut s_2x3_vm = s_2x3.clone();
let s_2x3_vm: SMatrixViewMut<_, 2, 3> = s_2x3_vm.as_view_mut();
verify_stack!(SMatrix<_, 4, 7>; [ s_2x2_vm, &s_2x3_vm, d_2x2_v;
&d_2x2_v, s_2x3_v, &s_2x2_v]);
// Expressions
let matrix_fn = |matrix: &DMatrix<_>| matrix.map(|x_ij| x_ij * 3);
verify_stack!(SMatrix<_, 2, 5>; [ 2 * s_2x2 - 3 * &d_2x2, s_2x3 + 2 * s_2x3]);
verify_stack!(DMatrix<_>; [ 2 * matrix_fn(&d_2x2) ]);
verify_stack!(SMatrix<_, 2, 5>; [ (|matrix| 4 * matrix)(s_2x2), s_2x3 ]);
}
#[test]
#[ignore]
fn stack_trybuild_tests() {
let t = trybuild::TestCases::new();
// Verify error message when a row or column only contains a zero entry
t.compile_fail("tests/macros/trybuild/stack_empty_row.rs");
t.compile_fail("tests/macros/trybuild/stack_empty_col.rs");
t.compile_fail("tests/macros/trybuild/stack_incompatible_block_dimensions.rs");
t.compile_fail("tests/macros/trybuild/stack_incompatible_block_dimensions2.rs");
}
#[test]
fn stack_mismatched_dimensions_runtime_panics() {
// s prefix denotes static, d dynamic
let s_2x2 = matrix![1, 2; 3, 4];
let d_2x3 = dmatrix![5, 6, 7; 8, 9, 10];
let d_1x2 = dmatrix![11, 12];
let d_1x3 = dmatrix![13, 14, 15];
assert_panics!(
stack![s_2x2, d_1x2],
includes("All blocks in block row 0 must have the same number of rows")
);
assert_panics!(
stack![s_2x2; d_2x3],
includes("All blocks in block column 0 must have the same number of columns")
);
assert_panics!(
stack![s_2x2, s_2x2; d_1x2, d_2x3],
includes("All blocks in block row 1 must have the same number of rows")
);
assert_panics!(
stack![s_2x2, s_2x2; d_1x2, d_1x3],
includes("All blocks in block column 1 must have the same number of columns")
);
assert_panics!(
{
// Edge case suggested by @tpdickso: https://github.com/dimforge/nalgebra/pull/1080#discussion_r1435871752
let d_3x0 = DMatrix::from_data(VecStorage::new(Dyn(3), Dyn(0), Vec::<i32>::new()));
stack![s_2x2, d_3x0]
},
includes("All blocks in block row 0 must have the same number of rows")
);
}
#[test]
fn stack_test_builtin_types() {
// Other than T: Zero, there's nothing type-specific in the logic for stack!
// These tests are just sanity tests, to make sure it works with the common built-in types
let a = matrix![1, 2; 3, 4];
let b = vector![5, 6];
let c = matrix![7, 8];
let expected = matrix![ 1, 2, 5;
3, 4, 6;
7, 8, 0 ];
macro_rules! check_builtin {
($T:ty) => {{
// Cannot use .cast::<$T> because we cannot convert between unsigned and signed
let stacked = stack![a.map(|a_ij| a_ij as $T), b.map(|b_ij| b_ij as $T);
c.map(|c_ij| c_ij as $T), 0];
assert_eq!(stacked, expected.map(|e_ij| e_ij as $T));
}}
}
check_builtin!(i8);
check_builtin!(i16);
check_builtin!(i32);
check_builtin!(i64);
check_builtin!(i128);
check_builtin!(u8);
check_builtin!(u16);
check_builtin!(u32);
check_builtin!(u64);
check_builtin!(u128);
check_builtin!(f32);
check_builtin!(f64);
}
#[test]
fn stack_test_complex() {
use num_complex::Complex as C;
type C32 = C<f32>;
let a = matrix![C::new(1.0, 1.0), C::new(2.0, 2.0); C::new(3.0, 3.0), C::new(4.0, 4.0)];
let b = vector![C::new(5.0, 5.0), C::new(6.0, 6.0)];
let c = matrix![C::new(7.0, 7.0), C::new(8.0, 8.0)];
let expected = matrix![ 1, 2, 5;
3, 4, 6;
7, 8, 0 ]
.map(|x| C::new(x as f64, x as f64));
assert_eq!(stack![a, b; c, 0], expected);
assert_eq!(
stack![a.cast::<C32>(), b.cast::<C32>(); c.cast::<C32>(), 0],
expected.cast::<C32>()
);
}
|