1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
use nom::{
branch::alt,
bytes::complete::tag,
character::complete::{alphanumeric1 as alphanumeric, digit1 as digit},
combinator::{map, map_res},
multi::separated_list0,
sequence::delimited,
IResult, Parser,
};
use nom_language::precedence::{binary_op, precedence, unary_op, Assoc, Operation};
// Elements of the abstract syntax tree (ast) that represents an expression.
#[derive(Debug)]
pub enum Expr {
// A number literal.
Num(i64),
// An identifier.
Iden(String),
// Arithmetic operations. Each have a left hand side (lhs) and a right hand side (rhs).
Add(Box<Expr>, Box<Expr>),
Sub(Box<Expr>, Box<Expr>),
Mul(Box<Expr>, Box<Expr>),
Div(Box<Expr>, Box<Expr>),
// The function call operation. Left is the expression the function is called on, right is the list of parameters.
Call(Box<Expr>, Vec<Expr>),
// The ternary operator, the expressions from left to right are: The condition, the true case, the false case.
Tern(Box<Expr>, Box<Expr>, Box<Expr>),
}
// Prefix operators.
enum PrefixOp {
Identity, // +
Negate, // -
}
// Postfix operators.
enum PostfixOp {
// The function call operator. In addition to its own representation "()" it carries additional information that we need to keep here.
// Specifically the vector of expressions that make up the parameters.
Call(Vec<Expr>), // ()
}
// Binary operators.
enum BinaryOp {
Addition, // +
Subtraction, // -
Multiplication, // *
Division, // /
// The ternary operator can contain a single expression.
Ternary(Expr), // ?:
}
// Parser for function calls.
fn function_call(i: &str) -> IResult<&str, PostfixOp> {
map(
delimited(
tag("("),
// Subexpressions are evaluated by recursing back into the expression parser.
separated_list0(tag(","), expression),
tag(")"),
),
|v: Vec<Expr>| PostfixOp::Call(v),
)
.parse(i)
}
// The ternary operator is actually just a binary operator that contains another expression. So it can be
// handled similarly to the function call operator except its in a binary position and can only contain
// a single expression.
//
// For example the expression "a<b ? a : b" is handled similarly to the function call operator, the
// "?" is treated like an opening bracket and the ":" is treated like a closing bracket.
//
// For the outer expression the result looks like "a<b ?: b". Where "?:" is a single operator. The
// subexpression is contained within the operator in the same way that the function call operator
// contains subexpressions.
fn ternary_operator(i: &str) -> IResult<&str, BinaryOp> {
map(delimited(tag("?"), expression, tag(":")), |e: Expr| {
BinaryOp::Ternary(e)
})
.parse(i)
}
// The actual expression parser .
fn expression(i: &str) -> IResult<&str, Expr> {
precedence(
alt((
unary_op(2, map(tag("+"), |_| PrefixOp::Identity)),
unary_op(2, map(tag("-"), |_| PrefixOp::Negate)),
)),
// Function calls are implemented as postfix unary operators.
unary_op(1, function_call),
alt((
binary_op(
3,
Assoc::Left,
alt((
map(tag("*"), |_| BinaryOp::Multiplication),
map(tag("/"), |_| BinaryOp::Division),
)),
),
binary_op(
4,
Assoc::Left,
alt((
map(tag("+"), |_| BinaryOp::Addition),
map(tag("-"), |_| BinaryOp::Subtraction),
)),
),
// Ternary operators are just binary operators with a subexpression.
binary_op(5, Assoc::Right, ternary_operator),
)),
alt((
map_res(digit, |s: &str| match s.parse::<i64>() {
Ok(s) => Ok(Expr::Num(s)),
Err(e) => Err(e),
}),
map(alphanumeric, |s: &str| Expr::Iden(s.to_string())),
delimited(tag("("), expression, tag(")")),
)),
|op: Operation<PrefixOp, PostfixOp, BinaryOp, Expr>| -> Result<Expr, ()> {
use nom_language::precedence::Operation::*;
use BinaryOp::*;
use PostfixOp::*;
use PrefixOp::*;
match op {
// The identity operator (prefix +) is ignored.
Prefix(Identity, e) => Ok(e),
// Unary minus gets evaluated to the same representation as a multiplication with -1.
Prefix(Negate, e) => Ok(Expr::Mul(Expr::Num(-1).into(), e.into())),
// The list of parameters are taken from the operator and placed into the ast.
Postfix(e, Call(p)) => Ok(Expr::Call(e.into(), p)),
// Meaning is assigned to the expressions of the ternary operator during evaluation.
// The lhs becomes the condition, the contained expression is the true case, rhs the false case.
Binary(lhs, Ternary(e), rhs) => Ok(Expr::Tern(lhs.into(), e.into(), rhs.into())),
// Raw operators get turned into their respective ast nodes.
Binary(lhs, Multiplication, rhs) => Ok(Expr::Mul(lhs.into(), rhs.into())),
Binary(lhs, Division, rhs) => Ok(Expr::Div(lhs.into(), rhs.into())),
Binary(lhs, Addition, rhs) => Ok(Expr::Add(lhs.into(), rhs.into())),
Binary(lhs, Subtraction, rhs) => Ok(Expr::Sub(lhs.into(), rhs.into())),
}
},
)(i)
}
#[test]
fn expression_test() {
assert_eq!(
expression("-2*max(2,3)-2").map(|(i, x)| (i, format!("{:?}", x))),
Ok((
"",
String::from("Sub(Mul(Mul(Num(-1), Num(2)), Call(Iden(\"max\"), [Num(2), Num(3)])), Num(2))")
))
);
assert_eq!(
expression("a?2+c:-2*2").map(|(i, x)| (i, format!("{:?}", x))),
Ok((
"",
String::from(
"Tern(Iden(\"a\"), Add(Num(2), Iden(\"c\")), Mul(Mul(Num(-1), Num(2)), Num(2)))"
)
))
);
}
|