1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
mod biguint {
use num_bigint::BigUint;
use num_traits::{One, Zero};
fn check<T: Into<BigUint>>(x: T, n: u32) {
let x: BigUint = x.into();
let root = x.nth_root(n);
println!("check {}.nth_root({}) = {}", x, n, root);
if n == 2 {
assert_eq!(root, x.sqrt())
} else if n == 3 {
assert_eq!(root, x.cbrt())
}
let lo = root.pow(n);
assert!(lo <= x);
assert_eq!(lo.nth_root(n), root);
if !lo.is_zero() {
assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
}
let hi = (&root + 1u32).pow(n);
assert!(hi > x);
assert_eq!(hi.nth_root(n), &root + 1u32);
assert_eq!((&hi - 1u32).nth_root(n), root);
}
#[test]
fn test_sqrt() {
check(99u32, 2);
check(100u32, 2);
check(120u32, 2);
}
#[test]
fn test_cbrt() {
check(8u32, 3);
check(26u32, 3);
}
#[test]
fn test_nth_root() {
check(0u32, 1);
check(10u32, 1);
check(100u32, 4);
}
#[test]
#[should_panic]
fn test_nth_root_n_is_zero() {
check(4u32, 0);
}
#[test]
fn test_nth_root_big() {
let x = BigUint::from(123_456_789_u32);
let expected = BigUint::from(6u32);
assert_eq!(x.nth_root(10), expected);
check(x, 10);
}
#[test]
fn test_nth_root_googol() {
let googol = BigUint::from(10u32).pow(100u32);
// perfect divisors of 100
for &n in &[2, 4, 5, 10, 20, 25, 50, 100] {
let expected = BigUint::from(10u32).pow(100u32 / n);
assert_eq!(googol.nth_root(n), expected);
check(googol.clone(), n);
}
}
#[test]
fn test_nth_root_twos() {
const EXP: u32 = 12;
const LOG2: usize = 1 << EXP;
let x = BigUint::one() << LOG2;
// the perfect divisors are just powers of two
for exp in 1..=EXP {
let n = 2u32.pow(exp);
let expected = BigUint::one() << (LOG2 / n as usize);
assert_eq!(x.nth_root(n), expected);
check(x.clone(), n);
}
// degenerate cases should return quickly
assert!(x.nth_root(x.bits() as u32).is_one());
assert!(x.nth_root(i32::MAX as u32).is_one());
assert!(x.nth_root(u32::MAX).is_one());
}
#[test]
fn test_roots_rand1() {
// A random input that found regressions
let s = "575981506858479247661989091587544744717244516135539456183849\
986593934723426343633698413178771587697273822147578889823552\
182702908597782734558103025298880194023243541613924361007059\
353344183590348785832467726433749431093350684849462759540710\
026019022227591412417064179299354183441181373862905039254106\
4781867";
let x: BigUint = s.parse().unwrap();
check(x.clone(), 2);
check(x.clone(), 3);
check(x.clone(), 10);
check(x, 100);
}
}
mod bigint {
use num_bigint::BigInt;
use num_traits::Signed;
fn check(x: i64, n: u32) {
let big_x = BigInt::from(x);
let res = big_x.nth_root(n);
if n == 2 {
assert_eq!(&res, &big_x.sqrt())
} else if n == 3 {
assert_eq!(&res, &big_x.cbrt())
}
if big_x.is_negative() {
assert!(res.pow(n) >= big_x);
assert!((res - 1u32).pow(n) < big_x);
} else {
assert!(res.pow(n) <= big_x);
assert!((res + 1u32).pow(n) > big_x);
}
}
#[test]
fn test_nth_root() {
check(-100, 3);
}
#[test]
#[should_panic]
fn test_nth_root_x_neg_n_even() {
check(-100, 4);
}
#[test]
#[should_panic]
fn test_sqrt_x_neg() {
check(-4, 2);
}
#[test]
fn test_cbrt() {
check(8, 3);
check(-8, 3);
}
}
|