1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
extern crate ordermap;
extern crate itertools;
#[macro_use]
extern crate quickcheck;
extern crate fnv;
use ordermap::OrderMap;
use itertools::Itertools;
use quickcheck::Arbitrary;
use quickcheck::Gen;
use fnv::FnvHasher;
use std::hash::{BuildHasher, BuildHasherDefault};
type FnvBuilder = BuildHasherDefault<FnvHasher>;
type OrderMapFnv<K, V> = OrderMap<K, V, FnvBuilder>;
use std::collections::HashSet;
use std::collections::HashMap;
use std::iter::FromIterator;
use std::hash::Hash;
use std::fmt::Debug;
use std::ops::Deref;
use std::cmp::min;
use ordermap::map::Entry as OEntry;
use std::collections::hash_map::Entry as HEntry;
fn set<'a, T: 'a, I>(iter: I) -> HashSet<T>
where I: IntoIterator<Item=&'a T>,
T: Copy + Hash + Eq
{
iter.into_iter().cloned().collect()
}
fn ordermap<'a, T: 'a, I>(iter: I) -> OrderMap<T, ()>
where I: IntoIterator<Item=&'a T>,
T: Copy + Hash + Eq,
{
OrderMap::from_iter(iter.into_iter().cloned().map(|k| (k, ())))
}
quickcheck! {
fn contains(insert: Vec<u32>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
insert.iter().all(|&key| map.get(&key).is_some())
}
fn contains_not(insert: Vec<u8>, not: Vec<u8>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
let nots = &set(¬) - &set(&insert);
nots.iter().all(|&key| map.get(&key).is_none())
}
fn insert_remove(insert: Vec<u8>, remove: Vec<u8>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
for &key in &remove {
map.swap_remove(&key);
}
let elements = &set(&insert) - &set(&remove);
map.len() == elements.len() && map.iter().count() == elements.len() &&
elements.iter().all(|k| map.get(k).is_some())
}
fn insertion_order(insert: Vec<u32>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
itertools::assert_equal(insert.iter().unique(), map.keys());
true
}
fn pop(insert: Vec<u8>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
let mut pops = Vec::new();
while let Some((key, _v)) = map.pop() {
pops.push(key);
}
pops.reverse();
itertools::assert_equal(insert.iter().unique(), &pops);
true
}
fn with_cap(cap: usize) -> bool {
let map: OrderMap<u8, u8> = OrderMap::with_capacity(cap);
println!("wish: {}, got: {} (diff: {})", cap, map.capacity(), map.capacity() as isize - cap as isize);
map.capacity() >= cap
}
fn drain(insert: Vec<u8>) -> bool {
let mut map = OrderMap::new();
for &key in &insert {
map.insert(key, ());
}
let mut clone = map.clone();
let drained = clone.drain(..);
for (key, _) in drained {
map.remove(&key);
}
map.is_empty()
}
}
use Op::*;
#[derive(Copy, Clone, Debug)]
enum Op<K, V> {
Add(K, V),
Remove(K),
AddEntry(K, V),
RemoveEntry(K),
}
impl<K, V> Arbitrary for Op<K, V>
where K: Arbitrary,
V: Arbitrary,
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
match g.gen::<u32>() % 4 {
0 => Add(K::arbitrary(g), V::arbitrary(g)),
1 => AddEntry(K::arbitrary(g), V::arbitrary(g)),
2 => Remove(K::arbitrary(g)),
_ => RemoveEntry(K::arbitrary(g)),
}
}
}
fn do_ops<K, V, S>(ops: &[Op<K, V>], a: &mut OrderMap<K, V, S>, b: &mut HashMap<K, V>)
where K: Hash + Eq + Clone,
V: Clone,
S: BuildHasher,
{
for op in ops {
match *op {
Add(ref k, ref v) => {
a.insert(k.clone(), v.clone());
b.insert(k.clone(), v.clone());
}
AddEntry(ref k, ref v) => {
a.entry(k.clone()).or_insert(v.clone());
b.entry(k.clone()).or_insert(v.clone());
}
Remove(ref k) => {
a.swap_remove(k);
b.remove(k);
}
RemoveEntry(ref k) => {
match a.entry(k.clone()) {
OEntry::Occupied(ent) => { ent.remove_entry(); },
_ => { }
}
match b.entry(k.clone()) {
HEntry::Occupied(ent) => { ent.remove_entry(); },
_ => { }
}
}
}
//println!("{:?}", a);
}
}
fn assert_maps_equivalent<K, V>(a: &OrderMap<K, V>, b: &HashMap<K, V>) -> bool
where K: Hash + Eq + Debug,
V: Eq + Debug,
{
assert_eq!(a.len(), b.len());
assert_eq!(a.iter().next().is_some(), b.iter().next().is_some());
for key in a.keys() {
assert!(b.contains_key(key), "b does not contain {:?}", key);
}
for key in b.keys() {
assert!(a.get(key).is_some(), "a does not contain {:?}", key);
}
for key in a.keys() {
assert_eq!(a[key], b[key]);
}
true
}
quickcheck! {
fn operations_i8(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = OrderMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
assert_maps_equivalent(&map, &reference)
}
fn operations_string(ops: Vec<Op<Alpha, i8>>) -> bool {
let mut map = OrderMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
assert_maps_equivalent(&map, &reference)
}
fn keys_values(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = OrderMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
let mut visit = OrderMap::new();
for (k, v) in map.keys().zip(map.values()) {
assert_eq!(&map[k], v);
assert!(!visit.contains_key(k));
visit.insert(*k, *v);
}
assert_eq!(visit.len(), reference.len());
true
}
fn keys_values_mut(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = OrderMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
let mut visit = OrderMap::new();
let keys = Vec::from_iter(map.keys().cloned());
for (k, v) in keys.iter().zip(map.values_mut()) {
assert_eq!(&reference[k], v);
assert!(!visit.contains_key(k));
visit.insert(*k, *v);
}
assert_eq!(visit.len(), reference.len());
true
}
fn equality(ops1: Vec<Op<i8, i8>>, removes: Vec<usize>) -> bool {
let mut map = OrderMap::new();
let mut reference = HashMap::new();
do_ops(&ops1, &mut map, &mut reference);
let mut ops2 = ops1.clone();
for &r in &removes {
if !ops2.is_empty() {
let i = r % ops2.len();
ops2.remove(i);
}
}
let mut map2 = OrderMapFnv::default();
let mut reference2 = HashMap::new();
do_ops(&ops2, &mut map2, &mut reference2);
assert_eq!(map == map2, reference == reference2);
true
}
fn retain_ordered(keys: Large<Vec<i8>>, remove: Large<Vec<i8>>) -> () {
let mut map = ordermap(keys.iter());
let initial_map = map.clone(); // deduplicated in-order input
let remove_map = ordermap(remove.iter());
let keys_s = set(keys.iter());
let remove_s = set(remove.iter());
let answer = &keys_s - &remove_s;
map.retain(|k, _| !remove_map.contains_key(k));
// check the values
assert_eq!(map.len(), answer.len());
for key in &answer {
assert!(map.contains_key(key));
}
// check the order
itertools::assert_equal(map.keys(), initial_map.keys().filter(|&k| !remove_map.contains_key(k)));
}
fn sort_1(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec());
let mut answer = keyvals.0;
answer.sort_by_key(|t| t.0);
// reverse dedup: Because OrderMap::from_iter keeps the last value for
// identical keys
answer.reverse();
answer.dedup_by_key(|t| t.0);
answer.reverse();
map.sort_by(|k1, _, k2, _| Ord::cmp(k1, k2));
// check it contains all the values it should
for &(key, val) in &answer {
assert_eq!(map[&key], val);
}
// check the order
let mapv = Vec::from_iter(map);
assert_eq!(answer, mapv);
}
fn sort_2(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: OrderMap<_, _> = OrderMap::from_iter(keyvals.to_vec());
map.sort_by(|_, v1, _, v2| Ord::cmp(v1, v2));
assert_sorted_by_key(map, |t| t.1);
}
}
fn assert_sorted_by_key<I, Key, X>(iterable: I, key: Key)
where I: IntoIterator,
I::Item: Ord + Clone + Debug,
Key: Fn(&I::Item) -> X,
X: Ord,
{
let input = Vec::from_iter(iterable);
let mut sorted = input.clone();
sorted.sort_by_key(key);
assert_eq!(input, sorted);
}
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
struct Alpha(String);
impl Deref for Alpha {
type Target = String;
fn deref(&self) -> &String { &self.0 }
}
const ALPHABET: &'static [u8] = b"abcdefghijklmnopqrstuvwxyz";
impl Arbitrary for Alpha {
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let len = g.next_u32() % g.size() as u32;
let len = min(len, 16);
Alpha((0..len).map(|_| {
ALPHABET[g.next_u32() as usize % ALPHABET.len()] as char
}).collect())
}
fn shrink(&self) -> Box<Iterator<Item=Self>> {
Box::new((**self).shrink().map(Alpha))
}
}
/// quickcheck Arbitrary adaptor -- make a larger vec
#[derive(Clone, Debug)]
struct Large<T>(T);
impl<T> Deref for Large<T> {
type Target = T;
fn deref(&self) -> &T { &self.0 }
}
impl<T> Arbitrary for Large<Vec<T>>
where T: Arbitrary
{
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let len = g.next_u32() % (g.size() * 10) as u32;
Large((0..len).map(|_| T::arbitrary(g)).collect())
}
fn shrink(&self) -> Box<Iterator<Item=Self>> {
Box::new((**self).shrink().map(Large))
}
}
|