File: sliding-puzzle.rs

package info (click to toggle)
rust-pathfinding 4.14.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,024 kB
  • sloc: sh: 19; makefile: 2
file content (192 lines) | stat: -rw-r--r-- 5,682 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use itertools::Itertools;
use lazy_static::lazy_static;
use pathfinding::prelude::{astar, idastar};
use rand::prelude::*;
use rand::rngs::OsRng;
use std::thread;
use std::time::Instant;

#[cfg(test)]
const SIDE: u8 = 3;
#[cfg(not(test))]
const SIDE: u8 = 4;
const LIMIT: usize = (SIDE * SIDE) as usize;

#[allow(clippy::derived_hash_with_manual_eq)]
#[derive(Clone, Debug, Hash)]
struct Game {
    positions: [u8; LIMIT], // Correct position of piece at every index
    hole_idx: u8,           // Current index of the hole
    weight: u8,             // Current sum of pieces Manhattan distances
}

impl PartialEq for Game {
    fn eq(&self, other: &Self) -> bool {
        self.hole_idx == other.hole_idx
            && self.weight == other.weight
            && self.positions == other.positions
    }
}

impl Eq for Game {}

lazy_static! {
    static ref GOAL: Game = Game {
        positions: {
            let mut p = [0u8; LIMIT];
            for (i, e) in p.iter_mut().enumerate() {
                *e = u8::try_from(i).unwrap();
            }
            p
        },
        hole_idx: 0,
        weight: 0,
    };
    static ref SUCCESSORS: Vec<Vec<u8>> = (0..SIDE * SIDE)
        .map(|idx| (0..4)
            .filter_map(|dir| match dir {
                0 if idx % SIDE > 0 => Some(idx - 1),
                1 if idx >= SIDE => Some(idx - SIDE),
                2 if idx % SIDE < SIDE - 1 => Some(idx + 1),
                3 if idx < SIDE * SIDE - SIDE => Some(idx + SIDE),
                _ => None,
            })
            .collect::<Vec<_>>())
        .collect();
}

impl Game {
    /// Move the hole to the given index.
    fn switch(&self, idx: u8) -> Self {
        let mut g = self.clone();
        g.positions.swap(self.hole_idx as usize, idx as usize);
        g.hole_idx = idx;
        g.weight = g.weight
            + g.distance(self.hole_idx) // Distance of the moved piece at its new index
            - self.distance(idx); // Distance of the moved piece at its previous index
        g
    }

    #[inline]
    const fn x(pos: u8) -> u8 {
        pos % SIDE
    }

    #[inline]
    const fn y(pos: u8) -> u8 {
        pos / SIDE
    }

    // Compute the Manhattan distance between the piece at idx and its correct position.
    fn distance(&self, idx: u8) -> u8 {
        let (actual_x, actual_y) = (Self::x(idx), Self::y(idx));
        let (correct_x, correct_y) = (
            Self::x(self.positions[idx as usize]),
            Self::y(self.positions[idx as usize]),
        );
        actual_x.abs_diff(correct_x) + actual_y.abs_diff(correct_y)
    }

    fn solved(&self) -> bool {
        self.positions == GOAL.positions
    }

    // Here we try to illustrate that we can return an iterator without building a Vec.
    // However, since the successors are the current board with the hole moved one
    // position, we need to build a clone of the current board that will be reused in
    // this iterator.
    fn successors(&self) -> impl Iterator<Item = (Self, u8)> {
        let game = self.clone();
        SUCCESSORS[self.hole_idx as usize]
            .iter()
            .map(move |&n| (game.switch(n), 1))
    }

    fn is_solvable(&self) -> bool {
        let mut inversions = 0;
        for i in 0..LIMIT {
            let c = self.positions[i];
            if c != 0 {
                for j in i + 1..LIMIT {
                    let d = self.positions[j];
                    if d != 0 && d < c {
                        inversions ^= 1;
                    }
                }
            }
        }
        if SIDE % 2 == 1 {
            inversions == 0
        } else {
            Self::y(self.hole_idx) % 2 == inversions
        }
    }

    fn from_array(positions: [u8; LIMIT]) -> Self {
        let hole_idx =
            u8::try_from(positions.iter().find_position(|&&n| n == 0).unwrap().0).unwrap();
        let mut game = Self {
            positions,
            hole_idx,
            weight: 0,
        };
        game.weight = (0..u8::try_from(LIMIT).unwrap())
            .filter(|&n| n != game.hole_idx)
            .map(|n| game.distance(n))
            .sum();
        game
    }

    fn shuffled() -> Self {
        let mut rng = OsRng;
        let mut positions = Self::default().positions;
        loop {
            positions.shuffle(&mut rng);
            let game = Self::from_array(positions);
            if game.is_solvable() {
                return game;
            }
        }
    }
}

impl Default for Game {
    fn default() -> Self {
        GOAL.clone()
    }
}

#[test]
fn test() {
    // main() already contains checks.
    main();
}

fn main() {
    let b = Game::shuffled();
    println!("{b:?}");
    assert!(b.is_solvable());
    let start = Instant::now();
    let (astar_result, idastar_result) = thread::scope(|s| {
        let idastar_handle = s.spawn({
            || {
                let result = idastar(&b, Game::successors, |b| b.weight, Game::solved).unwrap();
                println!("idastar: {} moves in {:.3?}", result.1, start.elapsed(),);
                assert!(result.0.last().unwrap().weight == 0);
                result.1
            }
        });
        (
            {
                let result = astar(&b, Game::successors, |b| b.weight, Game::solved).unwrap();
                println!("astar: {} moves in {:.3?}", result.1, start.elapsed(),);
                assert!(result.0.last().unwrap().weight == 0);
                result.1
            },
            idastar_handle.join().unwrap(),
        )
    });
    println!("Total execution time: {:.3?}", start.elapsed());
    assert_eq!(idastar_result, astar_result);
    assert!(idastar_result >= b.weight);
}