1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
use proc_macro2::Span;
use std::collections::HashMap;
use crate::ast::*;
pub struct GrammarAnalysis<'a> {
pub rules: HashMap<String, &'a Rule>,
pub left_recursion: Vec<LeftRecursionError>,
pub loop_nullability: Vec<LoopNullabilityError>,
}
pub fn check<'a>(grammar: &'a Grammar) -> GrammarAnalysis<'a> {
let mut rules = HashMap::new();
// Pick only the first for duplicate rules (the duplicate is reported when translating the rule)
for rule in grammar.iter_rules() {
rules.entry(rule.name.to_string()).or_insert(rule);
}
let (rule_nullability, left_recursion) = LeftRecursionVisitor::check(grammar, &rules);
let loop_nullability = LoopNullabilityVisitor::check(grammar, &rule_nullability);
GrammarAnalysis {
rules,
left_recursion,
loop_nullability,
}
}
/// Check for infinite loops in the form of left recursion.
///
/// If a PEG expression recurses without first consuming input, it will
/// recurse until the stack overflows.
struct LeftRecursionVisitor<'a> {
stack: Vec<String>,
rules: &'a HashMap<String, &'a Rule>,
errors: Vec<LeftRecursionError>,
}
pub struct LeftRecursionError {
pub span: Span,
pub path: Vec<String>,
}
impl LeftRecursionError {
pub fn msg(&self) -> String {
format!(
"left recursive rules create an infinite loop: {}",
self.path.join(" -> ")
)
}
}
impl<'a> LeftRecursionVisitor<'a> {
fn check(grammar: &'a Grammar, rules: &HashMap<String, &'a Rule>) -> (HashMap<String, bool>, Vec<LeftRecursionError>) {
let mut visitor = LeftRecursionVisitor {
rules,
errors: Vec::new(),
stack: Vec::new(),
};
let mut rule_nullability: HashMap<String, bool> = HashMap::new();
for rule in grammar.iter_rules() {
let nullable = visitor.walk_rule(rule);
debug_assert!(visitor.stack.is_empty());
rule_nullability.entry(rule.name.to_string()).or_insert(nullable);
}
(rule_nullability, visitor.errors)
}
fn walk_rule(&mut self, rule: &'a Rule) -> bool {
self.stack.push(rule.name.to_string());
let res = self.walk_expr(&rule.expr);
self.stack.pop().unwrap();
res
}
/// Walk the prefix of an expression that can be reached without consuming
/// input.
///
/// Returns true if the rule is known to match completely without consuming
/// any input. This is a conservative heuristic, if unknown, we return false
/// to avoid reporting false-positives for left recursion.
fn walk_expr(&mut self, this_expr: &SpannedExpr) -> bool {
use self::Expr::*;
match this_expr.expr {
RuleExpr(ref rule_ident, _, _) => {
let name = rule_ident.to_string();
if let Some(rule) = self.rules.get(&name) {
if let Some(loop_start) = self
.stack
.iter()
.position(|caller_name| caller_name == &name)
{
let mut recursive_loop = self.stack[loop_start..].to_vec();
recursive_loop.push(name.clone());
match rule.cache {
None | Some(Cache::Simple) =>
self.errors.push(LeftRecursionError {
path: recursive_loop,
span: rule_ident.span(),
}),
_ => ()
}
return false;
}
self.walk_rule(rule)
} else {
// Missing rule would have already been reported
false
}
}
ActionExpr(ref elems, ..) => {
for elem in elems {
if !self.walk_expr(&elem.expr) {
return false;
}
}
true
}
ChoiceExpr(ref choices) => {
let mut nullable = false;
for expr in choices {
nullable |= self.walk_expr(expr);
}
nullable
}
OptionalExpr(ref expr) | PosAssertExpr(ref expr) | NegAssertExpr(ref expr) => {
self.walk_expr(expr);
true
}
Repeat { ref inner, ref bound, .. } => {
let inner_nullable = self.walk_expr(inner);
inner_nullable | !bound.has_lower_bound()
}
MatchStrExpr(ref expr) | QuietExpr(ref expr) => self.walk_expr(expr),
PrecedenceExpr { ref levels } => {
let mut nullable = false;
for level in levels {
for operator in &level.operators {
let mut operator_nullable = true;
for element in &operator.elements {
if !self.walk_expr(&element.expr) {
operator_nullable = false;
break;
}
}
nullable |= operator_nullable;
}
}
nullable
}
| LiteralExpr(_)
| PatternExpr(_)
| MethodExpr(_, _)
| CustomExpr(_)
| FailExpr(_)
| MarkerExpr(_) => false,
PositionExpr => true,
}
}
}
/// Check for loops whose body can succeed without consuming any input, which
/// will loop infinitely.
struct LoopNullabilityVisitor<'a> {
rule_nullability: &'a HashMap<String, bool>,
errors: Vec<LoopNullabilityError>,
}
pub struct LoopNullabilityError {
pub span: Span,
}
impl LoopNullabilityError {
pub fn msg(&self) -> String {
format!("loops infinitely because loop body can match without consuming input")
}
}
impl<'a> LoopNullabilityVisitor<'a> {
fn check(grammar: &'a Grammar, rule_nullability: &HashMap<String, bool>) -> Vec<LoopNullabilityError> {
let mut visitor = LoopNullabilityVisitor {
rule_nullability,
errors: Vec::new(),
};
for rule in grammar.iter_rules() {
visitor.walk_expr(&rule.expr);
}
visitor.errors
}
/// Walk an expr and its children analyzing the nullability of loop bodies.
///
/// Returns true if the rule is known to match completely without consuming
/// any input. This is a conservative heuristic; if unknown, we return false
/// to avoid reporting false-positives.
///
/// This is very similar to LeftRecursionVisitor::walk_expr, but walks the
/// entire expression tree rather than just the nullable prefix, and doesn't
/// recurse into calls.
fn walk_expr(&mut self, this_expr: &SpannedExpr) -> bool {
use self::Expr::*;
match this_expr.expr {
RuleExpr(ref rule_ident, _, _) => {
let name = rule_ident.to_string();
*self.rule_nullability.get(&name).unwrap_or(&false)
}
ActionExpr(ref elems, ..) => {
let mut nullable = true;
for elem in elems {
nullable &= self.walk_expr(&elem.expr);
}
nullable
}
ChoiceExpr(ref choices) => {
let mut nullable = false;
for expr in choices {
nullable |= self.walk_expr(expr);
}
nullable
}
OptionalExpr(ref expr) | PosAssertExpr(ref expr) | NegAssertExpr(ref expr) => {
self.walk_expr(expr);
true
}
Repeat { ref inner, ref bound, ref sep } => {
let inner_nullable = self.walk_expr(inner);
let sep_nullable = sep.as_ref().map_or(true, |sep| self.walk_expr(sep));
// The entire purpose of this analysis: report errors if the loop body is nullable
if inner_nullable && sep_nullable && !bound.has_upper_bound() {
self.errors.push(LoopNullabilityError { span: this_expr.span });
}
inner_nullable | !bound.has_lower_bound()
}
MatchStrExpr(ref expr) | QuietExpr(ref expr) => self.walk_expr(expr),
PrecedenceExpr { ref levels } => {
let mut nullable = false;
for level in levels {
for operator in &level.operators {
let mut operator_nullable = true;
for element in &operator.elements {
operator_nullable &= self.walk_expr(&element.expr);
}
nullable |= operator_nullable;
}
}
nullable
}
| LiteralExpr(_)
| PatternExpr(_)
| MethodExpr(_, _)
| CustomExpr(_)
| FailExpr(_)
| MarkerExpr(_) => false,
PositionExpr => true,
}
}
}
|