1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
use petgraph::{
algo::{min_spanning_tree, min_spanning_tree_prim},
dot::Dot,
graph::{NodeIndex, UnGraph},
Graph, Undirected,
};
#[test]
fn mst_kruskal() {
use petgraph::data::FromElements;
let mut gr = Graph::<_, _>::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
let g = gr.add_node("G");
gr.add_edge(a, b, 7.);
gr.add_edge(a, d, 5.);
gr.add_edge(d, b, 9.);
gr.add_edge(b, c, 8.);
gr.add_edge(b, e, 7.);
gr.add_edge(c, e, 5.);
gr.add_edge(d, e, 15.);
gr.add_edge(d, f, 6.);
gr.add_edge(f, e, 8.);
gr.add_edge(f, g, 11.);
gr.add_edge(e, g, 9.);
// add a disjoint part
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
println!("{}", Dot::new(&gr));
let mst = UnGraph::from_elements(min_spanning_tree(&gr));
println!("{}", Dot::new(&mst));
println!("{:?}", Dot::new(&mst));
println!("MST is:\n{mst:#?}");
assert!(mst.node_count() == gr.node_count());
// |E| = |N| - 2 because there are two disconnected components.
assert!(mst.edge_count() == gr.node_count() - 2);
// check the exact edges are there
assert!(mst.find_edge(a, b).is_some());
assert!(mst.find_edge(a, d).is_some());
assert!(mst.find_edge(b, e).is_some());
assert!(mst.find_edge(e, c).is_some());
assert!(mst.find_edge(e, g).is_some());
assert!(mst.find_edge(d, f).is_some());
assert!(mst.find_edge(h, i).is_some());
assert!(mst.find_edge(i, j).is_some());
assert!(mst.find_edge(d, b).is_none());
assert!(mst.find_edge(b, c).is_none());
}
#[test]
fn mst_prim() {
use petgraph::data::FromElements;
let mut gr = UnGraph::<_, _>::new_undirected();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
let g = gr.add_node("G");
gr.add_edge(b, a, 7.);
gr.add_edge(d, a, 5.);
gr.add_edge(d, b, 9.);
gr.add_edge(b, c, 8.);
gr.add_edge(b, e, 7.);
gr.add_edge(c, e, 5.);
gr.add_edge(d, e, 15.);
gr.add_edge(d, f, 6.);
gr.add_edge(f, e, 8.);
gr.add_edge(f, g, 11.);
gr.add_edge(e, g, 9.);
println!("{}", Dot::new(&gr));
let mst = UnGraph::from_elements(min_spanning_tree_prim(&gr));
println!("{}", Dot::new(&mst));
println!("{:?}", Dot::new(&mst));
println!("MST is:\n{mst:#?}");
assert!(mst.node_count() == gr.node_count());
assert!(mst.edge_count() == gr.node_count() - 1);
// check the exact edges are there
assert!(mst.find_edge(a, d).is_some());
assert!(mst.find_edge(a, b).is_some());
assert!(mst.find_edge(d, f).is_some());
assert!(mst.find_edge(b, e).is_some());
assert!(mst.find_edge(e, c).is_some());
assert!(mst.find_edge(e, g).is_some());
}
#[test]
fn mst_prim_trivial_graph() {
use petgraph::data::FromElements;
let mut gr = UnGraph::<_, _>::new_undirected();
let a = gr.add_node("A");
let b = gr.add_node("B");
let a_b_weight = 7.;
gr.add_edge(a, b, a_b_weight);
println!("{}", Dot::new(&gr));
let mst = UnGraph::from_elements(min_spanning_tree_prim(&gr));
println!("{}", Dot::new(&mst));
println!("{:?}", Dot::new(&mst));
println!("MST is:\n{mst:#?}");
assert!(mst.node_count() == gr.node_count());
assert!(mst.edge_count() == gr.node_count() - 1);
assert!(mst.find_edge(a, b).is_some());
let edge_weight = *mst.edge_weight(mst.find_edge(a, b).unwrap()).unwrap();
assert_eq!(edge_weight, a_b_weight);
}
#[test]
fn mst_prim_graph_without_edges() {
use petgraph::data::FromElements;
let mut gr = UnGraph::<_, _>::new_undirected();
gr.add_node("A");
gr.add_node("B");
gr.add_node("C");
gr.add_node("D");
gr.add_node("E");
gr.add_node("F");
gr.add_node("G");
let mst: Graph<&str, usize, Undirected> = UnGraph::from_elements(min_spanning_tree_prim(&gr));
assert!(mst.node_count() == gr.node_count());
assert!(mst.edge_count() == 0);
}
#[test]
fn mst_prim_empty_graph() {
use petgraph::data::FromElements;
let gr = UnGraph::new_undirected();
let mst: Graph<&str, usize, Undirected> = UnGraph::from_elements(min_spanning_tree_prim(&gr));
assert!(mst.node_count() == 0);
assert!(mst.edge_count() == 0);
}
#[test]
fn mst_kruskal_test_cases() {
use petgraph::data::FromElements;
for (edges, expected_mst_edges) in TEST_CASES {
let mut gr = UnGraph::new_undirected();
gr.extend_with_edges(edges.to_vec());
let mst: Graph<(), u32, Undirected, u32> = UnGraph::from_elements(min_spanning_tree(&gr));
assert!(mst.node_count() == gr.node_count());
assert!(mst.edge_count() == expected_mst_edges.len());
for (source, target, _) in expected_mst_edges {
let a = NodeIndex::new(*source as usize);
let b = NodeIndex::new(*target as usize);
assert!(mst.contains_edge(a, b));
}
}
}
#[test]
fn mst_prim_test_cases() {
use petgraph::data::FromElements;
for (edges, expected_mst_edges) in TEST_CASES {
let mut gr = UnGraph::new_undirected();
gr.extend_with_edges(edges.to_vec());
let mst: Graph<(), u32, Undirected, u32> =
UnGraph::from_elements(min_spanning_tree_prim(&gr));
assert!(mst.node_count() == gr.node_count());
assert!(mst.edge_count() == expected_mst_edges.len());
for (source, target, _) in expected_mst_edges {
let a = NodeIndex::new(*source as usize);
let b = NodeIndex::new(*target as usize);
assert!(mst.contains_edge(a, b));
}
}
}
// Test cases format: (graph order, graph edges, mst edges)
#[rustfmt::skip]
#[allow(clippy::type_complexity)]
const TEST_CASES: [(&[(u32, u32, u32)], &[(u32, u32, u32)]); 4] = [
// Order 9
(&[(0, 2, 107), (0, 3, 24), (0, 4, 47), (0, 5, 60), (0, 6, 98), (0, 7, 29), (0, 8, 20), (1, 2, 62), (1, 3, 115), (1, 6, 42), (1, 7, 117), (1, 8, 19), (2, 3, 39), (2, 4, 12), (2, 5, 27), (2, 7, 3), (2, 8, 66), (3, 4, 54), (3, 5, 129), (3, 6, 18), (3, 7, 137), (3, 8, 120), (4, 5, 9), (4, 6, 124), (4, 7, 103), (4, 8, 7), (5, 7, 77), (5, 8, 63), (6, 7, 130), (7, 8, 138)],
&[(2, 7, 3), (4, 8, 7), (4, 5, 9), (2, 4, 12), (3, 6, 18), (1, 8, 19), (0, 8, 20), (0, 3, 24)]),
// Order 10
(&[(0, 2, 84), (0, 4, 5), (0, 5, 17), (0, 6, 97), (0, 7, 74), (0, 8, 16), (1, 3, 49), (1, 4, 28), (1, 8, 51), (1, 9, 137), (2, 3, 125), (2, 4, 87), (2, 6, 114), (2, 8, 131), (3, 4, 136), (3, 5, 43), (3, 8, 24), (3, 9, 112), (4, 5, 61), (4, 7, 99), (4, 8, 63), (4, 9, 108), (5, 6, 13), (5, 7, 9), (5, 8, 133), (6, 9, 147), (7, 8, 10), (7, 9, 88), (8, 9, 68)],
&[(0, 4, 5), (5, 7, 9), (7, 8, 10), (5, 6, 13), (0, 8, 16), (3, 8, 24), (1, 4, 28), (8, 9, 68), (0, 2, 84)]),
// Order 15
(&[(0, 1, 124), (0, 3, 126), (0, 6, 84), (0, 7, 87), (0, 9, 93), (0, 12, 32), (1, 2, 51), (1, 4, 144), (1, 6, 36), (1, 8, 46), (1, 9, 8), (1, 13, 26), (2, 8, 111), (3, 4, 114), (3, 6, 98), (3, 8, 86), (3, 9, 73), (4, 5, 41), (4, 6, 7), (4, 8, 82), (4, 9, 48), (4, 10, 113), (4, 11, 54), (4, 12, 10), (5, 8, 60), (5, 13, 34), (6, 13, 85), (6, 14, 52), (7, 8, 74), (7, 12, 137), (8, 10, 118), (8, 12, 69), (8, 13, 133), (9, 12, 13), (10, 12, 65), (10, 14, 107), (11, 14, 102), (12, 13, 140), (12, 14, 11), (13, 14, 25)],
&[(4, 6, 7), (1, 9, 8), (4, 12, 10), (12, 14, 11), (9, 12, 13), (13, 14, 25), (0, 12, 32), (5, 13, 34), (1, 8, 46), (1, 2, 51), (4, 11, 54), (10, 12, 65), (3, 9, 73), (7, 8, 74)]),
// Order 20
(&[(0, 2, 5), (0, 19, 73), (0, 12, 3), (1, 17, 145), (1, 18, 16), (1, 3, 125), (1, 5, 6), (1, 10, 76), (1, 11, 13), (1, 15, 12), (2, 7, 34), (2, 9, 118), (3, 12, 43), (3, 13, 146), (4, 7, 31), (5, 6, 62), (5, 8, 147), (6, 14, 66), (7, 16, 67), (7, 17, 48), (7, 10, 93), (7, 12, 113), (7, 14, 85), (8, 16, 40), (8, 18, 111), (9, 17, 102), (10, 16, 128), (10, 18, 120), (11, 17, 35), (11, 18, 88), (11, 13, 54), (11, 14, 36), (12, 16, 148), (13, 15, 75), (16, 17, 71), (16, 18, 10)],
&[(0, 12, 3), (0, 2, 5), (1, 5, 6), (16, 18, 10), (1, 15, 12), (1, 11, 13), (1, 18, 16), (4, 7, 31), (2, 7, 34), (11, 17, 35), (11, 14, 36), (8, 16, 40), (3, 12, 43), (7, 17, 48), (11, 13, 54), (5, 6, 62), (0, 19, 73), (1, 10, 76), (9, 17, 102)]),
];
|