1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
//-
// Copyright 2023 The proptest developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! In this example, we demonstrate using the state machine testing approach
//! for a heap implementation that has a bug in it. The heap `MyHeap` is in the
//! `system_under_test` module inlined at the bottom of this file.
#[macro_use]
extern crate proptest_state_machine;
use proptest::prelude::*;
use proptest::test_runner::Config;
use proptest_state_machine::{ReferenceStateMachine, StateMachineTest};
use system_under_test::MyHeap;
// Setup the state machine test using the `prop_state_machine!` macro
prop_state_machine! {
#![proptest_config(Config {
// Turn failure persistence off for demonstration. This means that no
// regression file will be captured.
failure_persistence: None,
// Enable verbose mode to make the state machine test print the
// transitions for each case.
verbose: 1,
.. Config::default()
})]
// NOTE: The `#[test]` attribute is commented out in here so we can run it
// as an example from the `fn main`.
// #[test]
fn run_my_heap_test(
// This is a macro's keyword - only `sequential` is currently supported.
sequential
// The number of transitions to be generated for each case. This can
// be a single numerical value or a range as in here.
1..20
// Macro's boilerplate to separate the following identifier.
=>
// The name of the type that implements `StateMachineTest`.
MyHeap<i32>
);
}
fn main() {
run_my_heap_test();
}
/// An empty type used for the `ReferenceStateMachine` implementation. The
/// actual state of it represented by `Vec<i32>`, but it doesn't have to
/// contained inside this type.
pub struct HeapStateMachine;
/// The possible transitions of the state machine.
#[derive(Clone, Debug)]
pub enum Transition {
Pop,
Push(i32),
}
// Implementation of the reference state machine that drives the test. That is,
// it's used to generate a sequence of transitions the `StateMachineTest`.
impl ReferenceStateMachine for HeapStateMachine {
type State = Vec<i32>;
type Transition = Transition;
fn init_state() -> BoxedStrategy<Self::State> {
Just(vec![]).boxed()
}
fn transitions(_state: &Self::State) -> BoxedStrategy<Self::Transition> {
// Using the regular proptest constructs here, the transitions can be
// given different weights.
prop_oneof![
1 => Just(Transition::Pop),
2 => (any::<i32>()).prop_map(Transition::Push),
]
.boxed()
}
fn apply(
mut state: Self::State,
transition: &Self::Transition,
) -> Self::State {
match transition {
Transition::Pop => {
state.pop();
}
Transition::Push(value) => state.push(*value),
}
state
}
}
impl StateMachineTest for MyHeap<i32> {
type SystemUnderTest = Self;
type Reference = HeapStateMachine;
fn init_test(
_ref_state: &<Self::Reference as ReferenceStateMachine>::State,
) -> Self::SystemUnderTest {
MyHeap::new()
}
fn apply(
mut state: Self::SystemUnderTest,
_ref_state: &<Self::Reference as ReferenceStateMachine>::State,
transition: Transition,
) -> Self::SystemUnderTest {
match transition {
Transition::Pop => {
// We read the state before applying the transition.
let was_empty = state.is_empty();
// We use the broken implementation of pop, which should be
// discovered by the test.
let result = state.pop_wrong();
// NOTE: To fix the issue that gets found by the state machine,
// you can comment out the last statement with `pop_wrong` and
// uncomment this one to see the test pass:
// let result = state.pop();
// Check a post-condition.
match result {
Some(value) => {
assert!(!was_empty);
// The heap must not contain any value which was
// greater than the "maximum" we were just given.
for in_heap in state.iter() {
assert!(
value >= *in_heap,
"Popped value {:?}, which was less \
than {:?} still in the heap",
value,
in_heap
);
}
}
None => assert!(was_empty),
}
}
Transition::Push(value) => state.push(value),
}
state
}
fn check_invariants(
state: &Self::SystemUnderTest,
_ref_state: &<Self::Reference as ReferenceStateMachine>::State,
) {
// Check that the heap's API gives consistent results
assert_eq!(0 == state.len(), state.is_empty());
}
}
/// A hand-rolled implementation of a binary heap, like
/// <https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html>,
/// except slow and buggy.
mod system_under_test {
use std::cmp;
#[derive(Clone, Debug)]
pub struct MyHeap<T> {
data: Vec<T>,
}
impl<T: cmp::Ord> MyHeap<T> {
pub fn new() -> Self {
MyHeap { data: vec![] }
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
pub fn len(&self) -> usize {
self.data.len()
}
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.data.iter()
}
pub fn push(&mut self, value: T) {
self.data.push(value);
let mut index = self.data.len() - 1;
while index > 0 {
let parent = (index - 1) / 2;
if self.data[parent] < self.data[index] {
self.data.swap(index, parent);
index = parent;
} else {
break;
}
}
}
// This implementation is wrong, because it doesn't preserve ordering
pub fn pop_wrong(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
Some(self.data.swap_remove(0))
}
}
// Fixed implementation of pop()
#[allow(dead_code)]
pub fn pop(&mut self) -> Option<T> {
if self.is_empty() {
return None;
}
let ret = self.data.swap_remove(0);
// Restore the heap property
let mut index = 0;
loop {
let child1 = index * 2 + 1;
let child2 = index * 2 + 2;
if child1 >= self.data.len() {
break;
}
let child = if child2 == self.data.len()
|| self.data[child1] > self.data[child2]
{
child1
} else {
child2
};
if self.data[index] < self.data[child] {
self.data.swap(child, index);
index = child;
} else {
break;
}
}
Some(ret)
}
}
}
|