File: lib.rs

package info (click to toggle)
rust-rctree 0.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 120 kB
  • sloc: makefile: 2
file content (683 lines) | stat: -rw-r--r-- 24,889 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/*!

*rctree* is a "DOM-like" tree implemented using reference counting.

"DOM-like" here means that data structures can be used to represent
the parsed content of an HTML or XML document,
like [*the* DOM](https://dom.spec.whatwg.org/) does,
but don't necessarily have the exact same API as the DOM.
That is:

* A tree is made up of nodes.
* Each node has zero or more *child* nodes, which are ordered.
* Each node has a no more than one *parent*, the node that it is a *child* of.
* A node without a *parent* is called a *root*.
* As a consequence, each node may also have *siblings*: its *parent*'s other *children*, if any.
* From any given node, access to its
  parent, previous sibling, next sibling, first child, and last child (if any)
  can take no more than *O(1)* time.
* Each node also has data associated to it,
  which for the purpose of this project is purely generic.
  For an HTML document, the data would be either the text of a text node,
  or the name and attributes of an element node.
* The tree is mutable:
  nodes (with their sub-trees) can be inserted or removed anywhere in the tree.

The lifetime of nodes is managed through *reference counting*.
To avoid reference cycles which would cause memory leaks, the tree is *asymmetric*:
each node holds optional *strong references* to its next sibling and first child,
but only optional *weak references* to its parent, previous sibling, and last child.

Nodes are destroyed as soon as there is no strong reference left to them.
The structure is such that holding a reference to the root
is sufficient to keep the entire tree alive.
However, if for example the only reference that exists from outside the tree
is one that you use to traverse it,
you will not be able to go back "up" the tree to ancestors and previous siblings after going "down",
as those nodes will have been destroyed.

Weak references to destroyed nodes are treated as if they were not set at all.
(E.g. a node can become a root when its parent is destroyed.)

Since nodes are *aliased* (have multiple references to them),
[`RefCell`](http://doc.rust-lang.org/std/cell/index.html) is used for interior mutability.

Advantages:

* A single `Node` user-visible type to manipulate the tree, with methods.
* Memory is freed as soon as it becomes unused (if parts of the tree are removed).

Disadvantages:

* The tree can only be accessed from the thread is was created in.
* Any tree manipulation, including read-only traversals,
  requires incrementing and decrementing reference counts,
  which causes run-time overhead.
* Nodes are allocated individually, which may cause memory fragmentation and hurt performance.

*/

#![doc(html_root_url = "https://docs.rs/rctree/0.2.1")]

#![forbid(unsafe_code)]
#![warn(missing_docs)]

use std::fmt;
use std::cell::{RefCell, Ref, RefMut};
use std::rc::{Rc, Weak};

type Link<T> = Rc<RefCell<NodeData<T>>>;
type WeakLink<T> = Weak<RefCell<NodeData<T>>>;

/// A reference to a node holding a value of type `T`. Nodes form a tree.
///
/// Internally, this uses reference counting for lifetime tracking
/// and `std::cell::RefCell` for interior mutability.
///
/// **Note:** Cloning a `Node` only increments a reference count. It does not copy the data.
pub struct Node<T>(Link<T>);

struct NodeData<T> {
    root: Option<WeakLink<T>>,
    parent: Option<WeakLink<T>>,
    first_child: Option<Link<T>>,
    last_child: Option<WeakLink<T>>,
    previous_sibling: Option<WeakLink<T>>,
    next_sibling: Option<Link<T>>,
    data: T,
}

/// Cloning a `Node` only increments a reference count. It does not copy the data.
impl<T> Clone for Node<T> {
    fn clone(&self) -> Self {
        Node(Rc::clone(&self.0))
    }
}

impl<T> PartialEq for Node<T> {
    fn eq(&self, other: &Node<T>) -> bool {
        Rc::ptr_eq(&self.0, &other.0)
    }
}

impl<T: fmt::Debug> fmt::Debug for Node<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&*self.borrow(), f)
    }
}


macro_rules! try_opt {
    ($expr: expr) => {
        match $expr {
            Some(value) => value,
            None => return None
        }
    }
}


impl<T> Node<T> {
    /// Creates a new node from its associated data.
    pub fn new(data: T) -> Node<T> {
        Node(Rc::new(RefCell::new(NodeData {
            root: None,
            parent: None,
            first_child: None,
            last_child: None,
            previous_sibling: None,
            next_sibling: None,
            data,
        })))
    }

    /// Returns a root node.
    ///
    /// If the current node is the root node - will return itself.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn root(&self) -> Node<T> {
        match self.0.borrow().root.as_ref() {
            Some(v) => Node(v.upgrade().unwrap()),
            None => self.clone(),
        }
    }

    /// Returns a parent node, unless this node is the root of the tree.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn parent(&self) -> Option<Node<T>> {
        Some(Node(try_opt!(try_opt!(self.0.borrow().parent.as_ref()).upgrade())))
    }

    /// Returns a first child of this node, unless it has no child.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn first_child(&self) -> Option<Node<T>> {
        Some(Node(try_opt!(self.0.borrow().first_child.as_ref()).clone()))
    }

    /// Returns a last child of this node, unless it has no child.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn last_child(&self) -> Option<Node<T>> {
        Some(Node(try_opt!(try_opt!(self.0.borrow().last_child.as_ref()).upgrade())))
    }

    /// Returns a previous sibling of this node, unless it is a first child.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn previous_sibling(&self) -> Option<Node<T>> {
        Some(Node(try_opt!(try_opt!(self.0.borrow().previous_sibling.as_ref()).upgrade())))
    }

    /// Returns a previous sibling of this node, unless it is a first child.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn next_sibling(&self) -> Option<Node<T>> {
        Some(Node(try_opt!(self.0.borrow().next_sibling.as_ref()).clone()))
    }

    /// Returns a shared reference to this node's data
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn borrow(&self) -> Ref<T> {
        Ref::map(self.0.borrow(), |v| &v.data)
    }

    /// Returns a unique/mutable reference to this node's data
    ///
    /// # Panics
    ///
    /// Panics if the node is currently borrowed.
    pub fn borrow_mut(&mut self) -> RefMut<T> {
        RefMut::map(self.0.borrow_mut(), |v| &mut v.data)
    }

    /// Returns an iterator of nodes to this node and its ancestors.
    ///
    /// Includes the current node.
    pub fn ancestors(&self) -> Ancestors<T> {
        Ancestors(Some(self.clone()))
    }

    /// Returns an iterator of nodes to this node and the siblings before it.
    ///
    /// Includes the current node.
    pub fn preceding_siblings(&self) -> PrecedingSiblings<T> {
        PrecedingSiblings(Some(self.clone()))
    }

    /// Returns an iterator of nodes to this node and the siblings after it.
    ///
    /// Includes the current node.
    pub fn following_siblings(&self) -> FollowingSiblings<T> {
        FollowingSiblings(Some(self.clone()))
    }

    /// Returns an iterator of nodes to this node's children.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn children(&self) -> Children<T> {
        Children(self.first_child())
    }

    /// Returns `true` if this node has children nodes.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn has_children(&self) -> bool {
        self.first_child().is_some()
    }

    /// Returns an iterator of nodes to this node's children, in reverse order.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutability borrowed.
    pub fn reverse_children(&self) -> ReverseChildren<T> {
        ReverseChildren(self.last_child())
    }

    /// Returns an iterator of nodes to this node and its descendants, in tree order.
    ///
    /// Includes the current node.
    pub fn descendants(&self) -> Descendants<T> {
        Descendants(self.traverse())
    }

    /// Returns an iterator of nodes to this node and its descendants, in tree order.
    pub fn traverse(&self) -> Traverse<T> {
        Traverse {
            root: self.clone(),
            next: Some(NodeEdge::Start(self.clone())),
        }
    }

    /// Returns an iterator of nodes to this node and its descendants, in tree order.
    pub fn reverse_traverse(&self) -> ReverseTraverse<T> {
        ReverseTraverse {
            root: self.clone(),
            next: Some(NodeEdge::End(self.clone())),
        }
    }

    /// Detaches a node from its parent and siblings. Children are not affected.
    ///
    /// # Panics
    ///
    /// Panics if the node or one of its adjoining nodes is currently borrowed.
    pub fn detach(&mut self) {
        self.0.borrow_mut().detach();
    }

    /// Appends a new child to this node, after existing children.
    ///
    /// # Panics
    ///
    /// Panics if the node, the new child, or one of their adjoining nodes is currently borrowed.
    pub fn append(&mut self, new_child: Node<T>) {
        assert!(*self != new_child, "a node cannot be appended to itself");

        let mut self_borrow = self.0.borrow_mut();
        let mut last_child_opt = None;
        {
            let mut new_child_borrow = new_child.0.borrow_mut();
            new_child_borrow.detach();
            new_child_borrow.root = Some(self_borrow.root.clone().unwrap_or(Rc::downgrade(&self.0)));
            new_child_borrow.parent = Some(Rc::downgrade(&self.0));
            if let Some(last_child_weak) = self_borrow.last_child.take() {
                if let Some(last_child_strong) = last_child_weak.upgrade() {
                    new_child_borrow.previous_sibling = Some(last_child_weak);
                    last_child_opt = Some(last_child_strong);
                }
            }
            self_borrow.last_child = Some(Rc::downgrade(&new_child.0));
        }

        if let Some(last_child_strong) = last_child_opt {
            let mut last_child_borrow = last_child_strong.borrow_mut();
            debug_assert!(last_child_borrow.next_sibling.is_none());
            last_child_borrow.next_sibling = Some(new_child.0);
        } else {
            // No last child
            debug_assert!(self_borrow.first_child.is_none());
            self_borrow.first_child = Some(new_child.0);
        }
    }

    /// Prepends a new child to this node, before existing children.
    ///
    /// # Panics
    ///
    /// Panics if the node, the new child, or one of their adjoining nodes is currently borrowed.
    pub fn prepend(&mut self, new_child: Node<T>) {
        assert!(*self != new_child, "a node cannot be prepended to itself");

        let mut self_borrow = self.0.borrow_mut();
        {
            let mut new_child_borrow = new_child.0.borrow_mut();
            new_child_borrow.detach();
            new_child_borrow.root = Some(self_borrow.root.clone().unwrap_or(Rc::downgrade(&self.0)));
            new_child_borrow.parent = Some(Rc::downgrade(&self.0));
            match self_borrow.first_child.take() {
                Some(first_child_strong) => {
                    {
                        let mut first_child_borrow = first_child_strong.borrow_mut();
                        debug_assert!(first_child_borrow.previous_sibling.is_none());
                        first_child_borrow.previous_sibling = Some(Rc::downgrade(&new_child.0));
                    }
                    new_child_borrow.next_sibling = Some(first_child_strong);
                }
                None => {
                    debug_assert!(self_borrow.first_child.is_none());
                    self_borrow.last_child = Some(Rc::downgrade(&new_child.0));
                }
            }
        }
        self_borrow.first_child = Some(new_child.0);
    }

    /// Inserts a new sibling after this node.
    ///
    /// # Panics
    ///
    /// Panics if the node, the new sibling, or one of their adjoining nodes is currently borrowed.
    pub fn insert_after(&mut self, new_sibling: Node<T>) {
        assert!(*self != new_sibling, "a node cannot be inserted after itself");

        let mut self_borrow = self.0.borrow_mut();
        {
            let mut new_sibling_borrow = new_sibling.0.borrow_mut();
            new_sibling_borrow.detach();
            new_sibling_borrow.root = self_borrow.root.clone();
            new_sibling_borrow.parent = self_borrow.parent.clone();
            new_sibling_borrow.previous_sibling = Some(Rc::downgrade(&self.0));
            match self_borrow.next_sibling.take() {
                Some(next_sibling_strong) => {
                    {
                        let mut next_sibling_borrow = next_sibling_strong.borrow_mut();
                        debug_assert!({
                            let weak = next_sibling_borrow.previous_sibling.as_ref().unwrap();
                            Rc::ptr_eq(&weak.upgrade().unwrap(), &self.0)
                        });
                        next_sibling_borrow.previous_sibling = Some(Rc::downgrade(&new_sibling.0));
                    }
                    new_sibling_borrow.next_sibling = Some(next_sibling_strong);
                }
                None => {
                    if let Some(parent_ref) = self_borrow.parent.as_ref() {
                        if let Some(parent_strong) = parent_ref.upgrade() {
                            let mut parent_borrow = parent_strong.borrow_mut();
                            parent_borrow.last_child = Some(Rc::downgrade(&new_sibling.0));
                        }
                    }
                }
            }
        }
        self_borrow.next_sibling = Some(new_sibling.0);
    }

    /// Inserts a new sibling before this node.
    ///
    /// # Panics
    ///
    /// Panics if the node, the new sibling, or one of their adjoining nodes is currently borrowed.
    pub fn insert_before(&mut self, new_sibling: Node<T>) {
        assert!(*self != new_sibling, "a node cannot be inserted before itself");

        let mut self_borrow = self.0.borrow_mut();
        let mut previous_sibling_opt = None;
        {
            let mut new_sibling_borrow = new_sibling.0.borrow_mut();
            new_sibling_borrow.detach();
            new_sibling_borrow.root = self_borrow.root.clone();
            new_sibling_borrow.parent = self_borrow.parent.clone();
            new_sibling_borrow.next_sibling = Some(self.0.clone());
            if let Some(previous_sibling_weak) = self_borrow.previous_sibling.take() {
                if let Some(previous_sibling_strong) = previous_sibling_weak.upgrade() {
                    new_sibling_borrow.previous_sibling = Some(previous_sibling_weak);
                    previous_sibling_opt = Some(previous_sibling_strong);
                }
            }
            self_borrow.previous_sibling = Some(Rc::downgrade(&new_sibling.0));
        }

        if let Some(previous_sibling_strong) = previous_sibling_opt {
            let mut previous_sibling_borrow = previous_sibling_strong.borrow_mut();
            debug_assert!({
                let rc = previous_sibling_borrow.next_sibling.as_ref().unwrap();
                Rc::ptr_eq(rc, &self.0)
            });
            previous_sibling_borrow.next_sibling = Some(new_sibling.0);
        } else {
            // No previous sibling.
            if let Some(parent_ref) = self_borrow.parent.as_ref() {
                if let Some(parent_strong) = parent_ref.upgrade() {
                    let mut parent_borrow = parent_strong.borrow_mut();
                    parent_borrow.first_child = Some(new_sibling.0);
                }
            }
        }
    }

    /// Returns a copy of a current node without children.
    ///
    /// # Panics
    ///
    /// Panics if the node is currently mutably borrowed.
    pub fn make_copy(&mut self) -> Node<T>
        where T: Clone
    {
        Node::new(self.borrow().clone())
    }

    /// Returns a copy of a current node with children.
    ///
    /// # Panics
    ///
    /// Panics if any of the descendant nodes are currently mutability borrowed.
    pub fn make_deep_copy(&mut self) -> Node<T>
        where T: Clone
    {
        let mut root = self.make_copy();
        Node::_make_deep_copy(&mut root, self);
        root
    }

    fn _make_deep_copy(parent: &mut Node<T>, node: &Node<T>)
        where T: Clone
    {
        for mut child in node.children() {
            let mut new_node = child.make_copy();
            parent.append(new_node.clone());

            if child.has_children() {
                Node::_make_deep_copy(&mut new_node, &child);
            }
        }
    }
}

impl<T> NodeData<T> {
    /// Detaches a node from its parent and siblings. Children are not affected.
    fn detach(&mut self) {
        let parent_weak = self.parent.take();
        let previous_sibling_weak = self.previous_sibling.take();
        let next_sibling_strong = self.next_sibling.take();

        let previous_sibling_opt = previous_sibling_weak.as_ref().and_then(|weak| weak.upgrade());

        if let Some(next_sibling_ref) = next_sibling_strong.as_ref() {
            let mut next_sibling_borrow = next_sibling_ref.borrow_mut();
            next_sibling_borrow.previous_sibling = previous_sibling_weak;
        } else if let Some(parent_ref) = parent_weak.as_ref() {
            if let Some(parent_strong) = parent_ref.upgrade() {
                let mut parent_borrow = parent_strong.borrow_mut();
                parent_borrow.last_child = previous_sibling_weak;
            }
        }

        if let Some(previous_sibling_strong) = previous_sibling_opt {
            let mut previous_sibling_borrow = previous_sibling_strong.borrow_mut();
            previous_sibling_borrow.next_sibling = next_sibling_strong;
        } else if let Some(parent_ref) = parent_weak.as_ref() {
            if let Some(parent_strong) = parent_ref.upgrade() {
                let mut parent_borrow = parent_strong.borrow_mut();
                parent_borrow.first_child = next_sibling_strong;
            }
        }
    }
}


macro_rules! impl_node_iterator {
    ($name: ident, $next: expr) => {
        impl<T> Iterator for $name<T> {
            type Item = Node<T>;

            /// # Panics
            ///
            /// Panics if the node about to be yielded is currently mutability borrowed.
            fn next(&mut self) -> Option<Self::Item> {
                match self.0.take() {
                    Some(node) => {
                        self.0 = $next(&node);
                        Some(node)
                    }
                    None => None
                }
            }
        }
    }
}

/// An iterator of nodes to the ancestors a given node.
pub struct Ancestors<T>(Option<Node<T>>);
impl_node_iterator!(Ancestors, |node: &Node<T>| node.parent());

/// An iterator of nodes to the siblings before a given node.
pub struct PrecedingSiblings<T>(Option<Node<T>>);
impl_node_iterator!(PrecedingSiblings, |node: &Node<T>| node.previous_sibling());

/// An iterator of nodes to the siblings after a given node.
pub struct FollowingSiblings<T>(Option<Node<T>>);
impl_node_iterator!(FollowingSiblings, |node: &Node<T>| node.next_sibling());

/// An iterator of nodes to the children of a given node.
pub struct Children<T>(Option<Node<T>>);
impl_node_iterator!(Children, |node: &Node<T>| node.next_sibling());

/// An iterator of nodes to the children of a given node, in reverse order.
pub struct ReverseChildren<T>(Option<Node<T>>);
impl_node_iterator!(ReverseChildren, |node: &Node<T>| node.previous_sibling());


/// An iterator of nodes to a given node and its descendants, in tree order.
pub struct Descendants<T>(Traverse<T>);

impl<T> Iterator for Descendants<T> {
    type Item = Node<T>;

    /// # Panics
    ///
    /// Panics if the node about to be yielded is currently mutability borrowed.
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.0.next() {
                Some(NodeEdge::Start(node)) => return Some(node),
                Some(NodeEdge::End(_)) => {}
                None => return None
            }
        }
    }
}


/// A node type during traverse.
#[derive(Clone)]
pub enum NodeEdge<T> {
    /// Indicates that start of a node that has children.
    /// Yielded by `Traverse::next` before the node's descendants.
    /// In HTML or XML, this corresponds to an opening tag like `<div>`
    Start(Node<T>),

    /// Indicates that end of a node that has children.
    /// Yielded by `Traverse::next` after the node's descendants.
    /// In HTML or XML, this corresponds to a closing tag like `</div>`
    End(Node<T>),
}


/// An iterator of nodes to a given node and its descendants, in tree order.
pub struct Traverse<T> {
    root: Node<T>,
    next: Option<NodeEdge<T>>,
}

impl<T> Iterator for Traverse<T> {
    type Item = NodeEdge<T>;

    /// # Panics
    ///
    /// Panics if the node about to be yielded is currently mutability borrowed.
    fn next(&mut self) -> Option<Self::Item> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdge::Start(ref node) => {
                        match node.first_child() {
                            Some(first_child) => Some(NodeEdge::Start(first_child)),
                            None => Some(NodeEdge::End(node.clone()))
                        }
                    }
                    NodeEdge::End(ref node) => {
                        if *node == self.root {
                            None
                        } else {
                            match node.next_sibling() {
                                Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
                                None => match node.parent() {
                                    Some(parent) => Some(NodeEdge::End(parent)),

                                    // `node.parent()` here can only be `None`
                                    // if the tree has been modified during iteration,
                                    // but silently stoping iteration
                                    // seems a more sensible behavior than panicking.
                                    None => None
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None
        }
    }
}

/// An iterator of nodes to a given node and its descendants, in reverse tree order.
pub struct ReverseTraverse<T> {
    root: Node<T>,
    next: Option<NodeEdge<T>>,
}

impl<T> Iterator for ReverseTraverse<T> {
    type Item = NodeEdge<T>;

    /// # Panics
    ///
    /// Panics if the node about to be yielded is currently mutability borrowed.
    fn next(&mut self) -> Option<Self::Item> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdge::End(ref node) => {
                        match node.last_child() {
                            Some(last_child) => Some(NodeEdge::End(last_child)),
                            None => Some(NodeEdge::Start(node.clone()))
                        }
                    }
                    NodeEdge::Start(ref node) => {
                        if *node == self.root {
                            None
                        } else {
                            match node.previous_sibling() {
                                Some(previous_sibling) => Some(NodeEdge::End(previous_sibling)),
                                None => match node.parent() {
                                    Some(parent) => Some(NodeEdge::Start(parent)),

                                    // `node.parent()` here can only be `None`
                                    // if the tree has been modified during iteration,
                                    // but silently stoping iteration
                                    // seems a more sensible behavior than panicking.
                                    None => None
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None
        }
    }
}