File: vpaes-armv7-linux32.S

package info (click to toggle)
rust-ring 0.17.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,316 kB
  • sloc: asm: 138,125; perl: 33,634; ansic: 26,517; makefile: 2
file content (722 lines) | stat: -rw-r--r-- 23,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// This file is generated from a similarly-named Perl script in the BoringSSL
// source tree. Do not edit by hand.

#include <ring-core/asm_base.h>

#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_ARM) && defined(__ELF__)
.syntax	unified

.arch	armv7-a
.fpu	neon

#if defined(__thumb2__)
.thumb
#else
.code	32
#endif

.text

.type	_vpaes_consts,%object
.align	7	@ totally strategic alignment
_vpaes_consts:
.Lk_mc_forward:@ mc_forward
.quad	0x0407060500030201, 0x0C0F0E0D080B0A09
.quad	0x080B0A0904070605, 0x000302010C0F0E0D
.quad	0x0C0F0E0D080B0A09, 0x0407060500030201
.quad	0x000302010C0F0E0D, 0x080B0A0904070605
.Lk_mc_backward:@ mc_backward
.quad	0x0605040702010003, 0x0E0D0C0F0A09080B
.quad	0x020100030E0D0C0F, 0x0A09080B06050407
.quad	0x0E0D0C0F0A09080B, 0x0605040702010003
.quad	0x0A09080B06050407, 0x020100030E0D0C0F
.Lk_sr:@ sr
.quad	0x0706050403020100, 0x0F0E0D0C0B0A0908
.quad	0x030E09040F0A0500, 0x0B06010C07020D08
.quad	0x0F060D040B020900, 0x070E050C030A0108
.quad	0x0B0E0104070A0D00, 0x0306090C0F020508

@
@ "Hot" constants
@
.Lk_inv:@ inv, inva
.quad	0x0E05060F0D080180, 0x040703090A0B0C02
.quad	0x01040A060F0B0780, 0x030D0E0C02050809
.Lk_ipt:@ input transform (lo, hi)
.quad	0xC2B2E8985A2A7000, 0xCABAE09052227808
.quad	0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
.Lk_sbo:@ sbou, sbot
.quad	0xD0D26D176FBDC700, 0x15AABF7AC502A878
.quad	0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
.Lk_sb1:@ sb1u, sb1t
.quad	0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
.quad	0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
.Lk_sb2:@ sb2u, sb2t
.quad	0x69EB88400AE12900, 0xC2A163C8AB82234A
.quad	0xE27A93C60B712400, 0x5EB7E955BC982FCD

.byte	86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,55,32,78,69,79,78,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0
.align	2
.size	_vpaes_consts,.-_vpaes_consts
.align	6
@@
@@  _aes_preheat
@@
@@  Fills q9-q15 as specified below.
@@
.type	_vpaes_preheat,%function
.align	4
_vpaes_preheat:
	adr	r10, .Lk_inv
	vmov.i8	q9, #0x0f		@ .Lk_s0F
	vld1.64	{q10,q11}, [r10]!	@ .Lk_inv
	add	r10, r10, #64		@ Skip .Lk_ipt, .Lk_sbo
	vld1.64	{q12,q13}, [r10]!	@ .Lk_sb1
	vld1.64	{q14,q15}, [r10]	@ .Lk_sb2
	bx	lr

@@
@@  _aes_encrypt_core
@@
@@  AES-encrypt q0.
@@
@@  Inputs:
@@     q0 = input
@@     q9-q15 as in _vpaes_preheat
@@    [r2] = scheduled keys
@@
@@  Output in q0
@@  Clobbers  q1-q5, r8-r11
@@  Preserves q6-q8 so you get some local vectors
@@
@@
.type	_vpaes_encrypt_core,%function
.align	4
_vpaes_encrypt_core:
	mov	r9, r2
	ldr	r8, [r2,#240]		@ pull rounds
	adr	r11, .Lk_ipt
	@ vmovdqa	.Lk_ipt(%rip),	%xmm2	# iptlo
	@ vmovdqa	.Lk_ipt+16(%rip), %xmm3	# ipthi
	vld1.64	{q2, q3}, [r11]
	adr	r11, .Lk_mc_forward+16
	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5		# round0 key
	vand	q1, q0, q9		@ vpand	%xmm9,	%xmm0,	%xmm1
	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0
	vtbl.8	d2, {q2}, d2	@ vpshufb	%xmm1,	%xmm2,	%xmm1
	vtbl.8	d3, {q2}, d3
	vtbl.8	d4, {q3}, d0	@ vpshufb	%xmm0,	%xmm3,	%xmm2
	vtbl.8	d5, {q3}, d1
	veor	q0, q1, q5		@ vpxor	%xmm5,	%xmm1,	%xmm0
	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0

	@ .Lenc_entry ends with a bnz instruction which is normally paired with
	@ subs in .Lenc_loop.
	tst	r8, r8
	b	.Lenc_entry

.align	4
.Lenc_loop:
	@ middle of middle round
	add	r10, r11, #0x40
	vtbl.8	d8, {q13}, d4	@ vpshufb	%xmm2,	%xmm13,	%xmm4	# 4 = sb1u
	vtbl.8	d9, {q13}, d5
	vld1.64	{q1}, [r11]!		@ vmovdqa	-0x40(%r11,%r10), %xmm1	# .Lk_mc_forward[]
	vtbl.8	d0, {q12}, d6	@ vpshufb	%xmm3,	%xmm12,	%xmm0	# 0 = sb1t
	vtbl.8	d1, {q12}, d7
	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
	vtbl.8	d10, {q15}, d4	@ vpshufb	%xmm2,	%xmm15,	%xmm5	# 4 = sb2u
	vtbl.8	d11, {q15}, d5
	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0	# 0 = A
	vtbl.8	d4, {q14}, d6	@ vpshufb	%xmm3,	%xmm14,	%xmm2	# 2 = sb2t
	vtbl.8	d5, {q14}, d7
	vld1.64	{q4}, [r10]		@ vmovdqa	(%r11,%r10), %xmm4	# .Lk_mc_backward[]
	vtbl.8	d6, {q0}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm3	# 0 = B
	vtbl.8	d7, {q0}, d3
	veor	q2, q2, q5		@ vpxor		%xmm5,	%xmm2,	%xmm2	# 2 = 2A
	@ Write to q5 instead of q0, so the table and destination registers do
	@ not overlap.
	vtbl.8	d10, {q0}, d8	@ vpshufb	%xmm4,	%xmm0,	%xmm0	# 3 = D
	vtbl.8	d11, {q0}, d9
	veor	q3, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3	# 0 = 2A+B
	vtbl.8	d8, {q3}, d2	@ vpshufb	%xmm1,	%xmm3,	%xmm4	# 0 = 2B+C
	vtbl.8	d9, {q3}, d3
	@ Here we restore the original q0/q5 usage.
	veor	q0, q5, q3		@ vpxor		%xmm3,	%xmm0,	%xmm0	# 3 = 2A+B+D
	and	r11, r11, #~(1<<6)	@ and		$0x30,	%r11		# ... mod 4
	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0, %xmm0	# 0 = 2A+3B+C+D
	subs	r8, r8, #1		@ nr--

.Lenc_entry:
	@ top of round
	vand	q1, q0, q9		@ vpand		%xmm0,	%xmm9,	%xmm1   # 0 = k
	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0	# 1 = i
	vtbl.8	d10, {q11}, d2	@ vpshufb	%xmm1,	%xmm11,	%xmm5	# 2 = a/k
	vtbl.8	d11, {q11}, d3
	veor	q1, q1, q0		@ vpxor		%xmm0,	%xmm1,	%xmm1	# 0 = j
	vtbl.8	d6, {q10}, d0	@ vpshufb	%xmm0, 	%xmm10,	%xmm3  	# 3 = 1/i
	vtbl.8	d7, {q10}, d1
	vtbl.8	d8, {q10}, d2	@ vpshufb	%xmm1, 	%xmm10,	%xmm4  	# 4 = 1/j
	vtbl.8	d9, {q10}, d3
	veor	q3, q3, q5		@ vpxor		%xmm5,	%xmm3,	%xmm3	# 3 = iak = 1/i + a/k
	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4  	# 4 = jak = 1/j + a/k
	vtbl.8	d4, {q10}, d6	@ vpshufb	%xmm3,	%xmm10,	%xmm2  	# 2 = 1/iak
	vtbl.8	d5, {q10}, d7
	vtbl.8	d6, {q10}, d8	@ vpshufb	%xmm4,	%xmm10,	%xmm3	# 3 = 1/jak
	vtbl.8	d7, {q10}, d9
	veor	q2, q2, q1		@ vpxor		%xmm1,	%xmm2,	%xmm2  	# 2 = io
	veor	q3, q3, q0		@ vpxor		%xmm0,	%xmm3,	%xmm3	# 3 = jo
	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5
	bne	.Lenc_loop

	@ middle of last round
	add	r10, r11, #0x80

	adr	r11, .Lk_sbo
	@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
	@ overlap table and destination registers.
	vld1.64	{q1}, [r11]!		@ vmovdqa	-0x60(%r10), %xmm4	# 3 : sbou
	vld1.64	{q0}, [r11]		@ vmovdqa	-0x50(%r10), %xmm0	# 0 : sbot	.Lk_sbo+16
	vtbl.8	d8, {q1}, d4	@ vpshufb	%xmm2,	%xmm4,	%xmm4	# 4 = sbou
	vtbl.8	d9, {q1}, d5
	vld1.64	{q1}, [r10]		@ vmovdqa	0x40(%r11,%r10), %xmm1	# .Lk_sr[]
	@ Write to q2 instead of q0 below, to avoid overlapping table and
	@ destination registers.
	vtbl.8	d4, {q0}, d6	@ vpshufb	%xmm3,	%xmm0,	%xmm0	# 0 = sb1t
	vtbl.8	d5, {q0}, d7
	veor	q4, q4, q5		@ vpxor	%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
	veor	q2, q2, q4		@ vpxor	%xmm4,	%xmm0,	%xmm0	# 0 = A
	@ Here we restore the original q0/q2 usage.
	vtbl.8	d0, {q2}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm0
	vtbl.8	d1, {q2}, d3
	bx	lr
.size	_vpaes_encrypt_core,.-_vpaes_encrypt_core
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@                                                    @@
@@                  AES key schedule                  @@
@@                                                    @@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ This function diverges from both x86_64 and armv7 in which constants are
@ pinned. x86_64 has a common preheat function for all operations. aarch64
@ separates them because it has enough registers to pin nearly all constants.
@ armv7 does not have enough registers, but needing explicit loads and stores
@ also complicates using x86_64's register allocation directly.
@
@ We pin some constants for convenience and leave q14 and q15 free to load
@ others on demand.

@
@  Key schedule constants
@
.type	_vpaes_key_consts,%object
.align	4
_vpaes_key_consts:
.Lk_rcon:@ rcon
.quad	0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81

.Lk_opt:@ output transform
.quad	0xFF9F4929D6B66000, 0xF7974121DEBE6808
.quad	0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
.Lk_deskew:@ deskew tables: inverts the sbox's "skew"
.quad	0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
.quad	0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
.size	_vpaes_key_consts,.-_vpaes_key_consts

.type	_vpaes_key_preheat,%function
.align	4
_vpaes_key_preheat:
	adr	r11, .Lk_rcon
	vmov.i8	q12, #0x5b			@ .Lk_s63
	adr	r10, .Lk_inv			@ Must be aligned to 8 mod 16.
	vmov.i8	q9, #0x0f			@ .Lk_s0F
	vld1.64	{q10,q11}, [r10]		@ .Lk_inv
	vld1.64	{q8}, [r11]			@ .Lk_rcon
	bx	lr
.size	_vpaes_key_preheat,.-_vpaes_key_preheat

.type	_vpaes_schedule_core,%function
.align	4
_vpaes_schedule_core:
	@ We only need to save lr, but ARM requires an 8-byte stack alignment,
	@ so save an extra register.
	stmdb	sp!, {r3,lr}

	bl	_vpaes_key_preheat	@ load the tables

	adr	r11, .Lk_ipt		@ Must be aligned to 8 mod 16.
	vld1.64	{q0}, [r0]!		@ vmovdqu	(%rdi),	%xmm0		# load key (unaligned)

	@ input transform
	@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
	@ overlap table and destination.
	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm3
	bl	_vpaes_schedule_transform
	adr	r10, .Lk_sr		@ Must be aligned to 8 mod 16.
	vmov	q7, q0			@ vmovdqa	%xmm0,	%xmm7

	add	r8, r8, r10

	@ encrypting, output zeroth round key after transform
	vst1.64	{q0}, [r2]		@ vmovdqu	%xmm0,	(%rdx)

	@ *ring*: Decryption removed.

.Lschedule_go:
	cmp	r1, #192		@ cmp	$192,	%esi
	bhi	.Lschedule_256
	@ 128: fall though

@@
@@  .schedule_128
@@
@@  128-bit specific part of key schedule.
@@
@@  This schedule is really simple, because all its parts
@@  are accomplished by the subroutines.
@@
.Lschedule_128:
	mov	r0, #10		@ mov	$10, %esi

.Loop_schedule_128:
	bl	_vpaes_schedule_round
	subs	r0, r0, #1		@ dec	%esi
	beq	.Lschedule_mangle_last
	bl	_vpaes_schedule_mangle	@ write output
	b	.Loop_schedule_128

@@
@@  .aes_schedule_256
@@
@@  256-bit specific part of key schedule.
@@
@@  The structure here is very similar to the 128-bit
@@  schedule, but with an additional "low side" in
@@  q6.  The low side's rounds are the same as the
@@  high side's, except no rcon and no rotation.
@@
.align	4
.Lschedule_256:
	vld1.64	{q0}, [r0]			@ vmovdqu	16(%rdi),%xmm0		# load key part 2 (unaligned)
	bl	_vpaes_schedule_transform	@ input transform
	mov	r0, #7			@ mov	$7, %esi

.Loop_schedule_256:
	bl	_vpaes_schedule_mangle		@ output low result
	vmov	q6, q0				@ vmovdqa	%xmm0,	%xmm6		# save cur_lo in xmm6

	@ high round
	bl	_vpaes_schedule_round
	subs	r0, r0, #1			@ dec	%esi
	beq	.Lschedule_mangle_last
	bl	_vpaes_schedule_mangle

	@ low round. swap xmm7 and xmm6
	vdup.32	q0, d1[1]		@ vpshufd	$0xFF,	%xmm0,	%xmm0
	vmov.i8	q4, #0
	vmov	q5, q7			@ vmovdqa	%xmm7,	%xmm5
	vmov	q7, q6			@ vmovdqa	%xmm6,	%xmm7
	bl	_vpaes_schedule_low_round
	vmov	q7, q5			@ vmovdqa	%xmm5,	%xmm7

	b	.Loop_schedule_256

@@
@@  .aes_schedule_mangle_last
@@
@@  Mangler for last round of key schedule
@@  Mangles q0
@@    when encrypting, outputs out(q0) ^ 63
@@    when decrypting, outputs unskew(q0)
@@
@@  Always called right before return... jumps to cleanup and exits
@@
.align	4
.Lschedule_mangle_last:
	@ schedule last round key from xmm0
	adr	r11, .Lk_deskew			@ lea	.Lk_deskew(%rip),%r11	# prepare to deskew

	@ encrypting
	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),%xmm1
	adr	r11, .Lk_opt		@ lea		.Lk_opt(%rip),	%r11		# prepare to output transform
	add	r2, r2, #32		@ add		$32,	%rdx
	vmov	q2, q0
	vtbl.8	d0, {q2}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm0		# output permute
	vtbl.8	d1, {q2}, d3

.Lschedule_mangle_last_dec:
	sub	r2, r2, #16			@ add	$-16,	%rdx
	veor	q0, q0, q12			@ vpxor	.Lk_s63(%rip),	%xmm0,	%xmm0
	bl	_vpaes_schedule_transform	@ output transform
	vst1.64	{q0}, [r2]			@ vmovdqu	%xmm0,	(%rdx)		# save last key

	@ cleanup
	veor	q0, q0, q0		@ vpxor	%xmm0,	%xmm0,	%xmm0
	veor	q1, q1, q1		@ vpxor	%xmm1,	%xmm1,	%xmm1
	veor	q2, q2, q2		@ vpxor	%xmm2,	%xmm2,	%xmm2
	veor	q3, q3, q3		@ vpxor	%xmm3,	%xmm3,	%xmm3
	veor	q4, q4, q4		@ vpxor	%xmm4,	%xmm4,	%xmm4
	veor	q5, q5, q5		@ vpxor	%xmm5,	%xmm5,	%xmm5
	veor	q6, q6, q6		@ vpxor	%xmm6,	%xmm6,	%xmm6
	veor	q7, q7, q7		@ vpxor	%xmm7,	%xmm7,	%xmm7
	ldmia	sp!, {r3,pc}		@ return
.size	_vpaes_schedule_core,.-_vpaes_schedule_core

@@
@@  .aes_schedule_round
@@
@@  Runs one main round of the key schedule on q0, q7
@@
@@  Specifically, runs subbytes on the high dword of q0
@@  then rotates it by one byte and xors into the low dword of
@@  q7.
@@
@@  Adds rcon from low byte of q8, then rotates q8 for
@@  next rcon.
@@
@@  Smears the dwords of q7 by xoring the low into the
@@  second low, result into third, result into highest.
@@
@@  Returns results in q7 = q0.
@@  Clobbers q1-q4, r11.
@@
.type	_vpaes_schedule_round,%function
.align	4
_vpaes_schedule_round:
	@ extract rcon from xmm8
	vmov.i8	q4, #0				@ vpxor		%xmm4,	%xmm4,	%xmm4
	vext.8	q1, q8, q4, #15		@ vpalignr	$15,	%xmm8,	%xmm4,	%xmm1
	vext.8	q8, q8, q8, #15	@ vpalignr	$15,	%xmm8,	%xmm8,	%xmm8
	veor	q7, q7, q1			@ vpxor		%xmm1,	%xmm7,	%xmm7

	@ rotate
	vdup.32	q0, d1[1]			@ vpshufd	$0xFF,	%xmm0,	%xmm0
	vext.8	q0, q0, q0, #1			@ vpalignr	$1,	%xmm0,	%xmm0,	%xmm0

	@ fall through...

	@ low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
	@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
	@ We pin other values in _vpaes_key_preheat, so load them now.
	adr	r11, .Lk_sb1
	vld1.64	{q14,q15}, [r11]

	@ smear xmm7
	vext.8	q1, q4, q7, #12			@ vpslldq	$4,	%xmm7,	%xmm1
	veor	q7, q7, q1			@ vpxor	%xmm1,	%xmm7,	%xmm7
	vext.8	q4, q4, q7, #8			@ vpslldq	$8,	%xmm7,	%xmm4

	@ subbytes
	vand	q1, q0, q9			@ vpand		%xmm9,	%xmm0,	%xmm1		# 0 = k
	vshr.u8	q0, q0, #4			@ vpsrlb	$4,	%xmm0,	%xmm0		# 1 = i
	veor	q7, q7, q4			@ vpxor		%xmm4,	%xmm7,	%xmm7
	vtbl.8	d4, {q11}, d2		@ vpshufb	%xmm1,	%xmm11,	%xmm2		# 2 = a/k
	vtbl.8	d5, {q11}, d3
	veor	q1, q1, q0			@ vpxor		%xmm0,	%xmm1,	%xmm1		# 0 = j
	vtbl.8	d6, {q10}, d0		@ vpshufb	%xmm0, 	%xmm10,	%xmm3		# 3 = 1/i
	vtbl.8	d7, {q10}, d1
	veor	q3, q3, q2			@ vpxor		%xmm2,	%xmm3,	%xmm3		# 3 = iak = 1/i + a/k
	vtbl.8	d8, {q10}, d2		@ vpshufb	%xmm1,	%xmm10,	%xmm4		# 4 = 1/j
	vtbl.8	d9, {q10}, d3
	veor	q7, q7, q12			@ vpxor		.Lk_s63(%rip),	%xmm7,	%xmm7
	vtbl.8	d6, {q10}, d6		@ vpshufb	%xmm3,	%xmm10,	%xmm3		# 2 = 1/iak
	vtbl.8	d7, {q10}, d7
	veor	q4, q4, q2			@ vpxor		%xmm2,	%xmm4,	%xmm4		# 4 = jak = 1/j + a/k
	vtbl.8	d4, {q10}, d8		@ vpshufb	%xmm4,	%xmm10,	%xmm2		# 3 = 1/jak
	vtbl.8	d5, {q10}, d9
	veor	q3, q3, q1			@ vpxor		%xmm1,	%xmm3,	%xmm3		# 2 = io
	veor	q2, q2, q0			@ vpxor		%xmm0,	%xmm2,	%xmm2		# 3 = jo
	vtbl.8	d8, {q15}, d6		@ vpshufb	%xmm3,	%xmm13,	%xmm4		# 4 = sbou
	vtbl.8	d9, {q15}, d7
	vtbl.8	d2, {q14}, d4		@ vpshufb	%xmm2,	%xmm12,	%xmm1		# 0 = sb1t
	vtbl.8	d3, {q14}, d5
	veor	q1, q1, q4			@ vpxor		%xmm4,	%xmm1,	%xmm1		# 0 = sbox output

	@ add in smeared stuff
	veor	q0, q1, q7			@ vpxor	%xmm7,	%xmm1,	%xmm0
	veor	q7, q1, q7			@ vmovdqa	%xmm0,	%xmm7
	bx	lr
.size	_vpaes_schedule_round,.-_vpaes_schedule_round

@@
@@  .aes_schedule_transform
@@
@@  Linear-transform q0 according to tables at [r11]
@@
@@  Requires that q9 = 0x0F0F... as in preheat
@@  Output in q0
@@  Clobbers q1, q2, q14, q15
@@
.type	_vpaes_schedule_transform,%function
.align	4
_vpaes_schedule_transform:
	vld1.64	{q14,q15}, [r11]	@ vmovdqa	(%r11),	%xmm2 	# lo
					@ vmovdqa	16(%r11),	%xmm1 # hi
	vand	q1, q0, q9		@ vpand	%xmm9,	%xmm0,	%xmm1
	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0
	vtbl.8	d4, {q14}, d2	@ vpshufb	%xmm1,	%xmm2,	%xmm2
	vtbl.8	d5, {q14}, d3
	vtbl.8	d0, {q15}, d0	@ vpshufb	%xmm0,	%xmm1,	%xmm0
	vtbl.8	d1, {q15}, d1
	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0
	bx	lr
.size	_vpaes_schedule_transform,.-_vpaes_schedule_transform

@@
@@  .aes_schedule_mangle
@@
@@  Mangles q0 from (basis-transformed) standard version
@@  to our version.
@@
@@  On encrypt,
@@    xor with 0x63
@@    multiply by circulant 0,1,1,1
@@    apply shiftrows transform
@@
@@  On decrypt,
@@    xor with 0x63
@@    multiply by "inverse mixcolumns" circulant E,B,D,9
@@    deskew
@@    apply shiftrows transform
@@
@@
@@  Writes out to [r2], and increments or decrements it
@@  Keeps track of round number mod 4 in r8
@@  Preserves q0
@@  Clobbers q1-q5
@@
.type	_vpaes_schedule_mangle,%function
.align	4
_vpaes_schedule_mangle:
	tst	r3, r3
	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm4	# save xmm0 for later
	adr	r11, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
	vld1.64	{q5}, [r11]		@ vmovdqa	.Lk_mc_forward(%rip),%xmm5

	@ encrypting
	@ Write to q2 so we do not overlap table and destination below.
	veor	q2, q0, q12		@ vpxor		.Lk_s63(%rip),	%xmm0,	%xmm4
	add	r2, r2, #16		@ add		$16,	%rdx
	vtbl.8	d8, {q2}, d10	@ vpshufb	%xmm5,	%xmm4,	%xmm4
	vtbl.8	d9, {q2}, d11
	vtbl.8	d2, {q4}, d10	@ vpshufb	%xmm5,	%xmm4,	%xmm1
	vtbl.8	d3, {q4}, d11
	vtbl.8	d6, {q1}, d10	@ vpshufb	%xmm5,	%xmm1,	%xmm3
	vtbl.8	d7, {q1}, d11
	veor	q4, q4, q1		@ vpxor		%xmm1,	%xmm4,	%xmm4
	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),	%xmm1
	veor	q3, q3, q4		@ vpxor		%xmm4,	%xmm3,	%xmm3

.Lschedule_mangle_both:
	@ Write to q2 so table and destination do not overlap.
	vtbl.8	d4, {q3}, d2	@ vpshufb	%xmm1,	%xmm3,	%xmm3
	vtbl.8	d5, {q3}, d3
	add	r8, r8, #64-16		@ add	$-16,	%r8
	and	r8, r8, #~(1<<6)	@ and	$0x30,	%r8
	vst1.64	{q2}, [r2]		@ vmovdqu	%xmm3,	(%rdx)
	bx	lr
.size	_vpaes_schedule_mangle,.-_vpaes_schedule_mangle

.globl	vpaes_set_encrypt_key
.hidden	vpaes_set_encrypt_key
.type	vpaes_set_encrypt_key,%function
.align	4
vpaes_set_encrypt_key:
	stmdb	sp!, {r7,r8,r9,r10,r11, lr}
	vstmdb	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}

	lsr	r9, r1, #5		@ shr	$5,%eax
	add	r9, r9, #5		@ $5,%eax
	str	r9, [r2,#240]		@ mov	%eax,240(%rdx)	# AES_KEY->rounds = nbits/32+5;

	mov	r3, #0		@ mov	$0,%ecx
	mov	r8, #0x30		@ mov	$0x30,%r8d
	bl	_vpaes_schedule_core
	eor	r0, r0, r0

	vldmia	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
	ldmia	sp!, {r7,r8,r9,r10,r11, pc}	@ return
.size	vpaes_set_encrypt_key,.-vpaes_set_encrypt_key

@ Additional constants for converting to bsaes.
.type	_vpaes_convert_consts,%object
.align	4
_vpaes_convert_consts:
@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
@ transform in the AES S-box. 0x63 is incorporated into the low half of the
@ table. This was computed with the following script:
@
@   def u64s_to_u128(x, y):
@       return x | (y << 64)
@   def u128_to_u64s(w):
@       return w & ((1<<64)-1), w >> 64
@   def get_byte(w, i):
@       return (w >> (i*8)) & 0xff
@   def apply_table(table, b):
@       lo = b & 0xf
@       hi = b >> 4
@       return get_byte(table[0], lo) ^ get_byte(table[1], hi)
@   def opt(b):
@       table = [
@           u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
@           u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
@       ]
@       return apply_table(table, b)
@   def rot_byte(b, n):
@       return 0xff & ((b << n) | (b >> (8-n)))
@   def skew(x):
@       return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
@               rot_byte(x, 4))
@   table = [0, 0]
@   for i in range(16):
@       table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
@       table[1] |= skew(opt(i<<4)) << (i*8)
@   print("	.quad	0x%016x, 0x%016x" % u128_to_u64s(table[0]))
@   print("	.quad	0x%016x, 0x%016x" % u128_to_u64s(table[1]))
.Lk_opt_then_skew:
.quad	0x9cb8436798bc4763, 0x6440bb9f6044bf9b
.quad	0x1f30062936192f00, 0xb49bad829db284ab

@ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
.globl	vpaes_encrypt_key_to_bsaes
.hidden	vpaes_encrypt_key_to_bsaes
.type	vpaes_encrypt_key_to_bsaes,%function
.align	4
vpaes_encrypt_key_to_bsaes:
	stmdb	sp!, {r11, lr}

	@ See _vpaes_schedule_core for the key schedule logic. In particular,
	@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
	@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
	@ contain the transformations not in the bsaes representation. This
	@ function inverts those transforms.
	@
	@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
	@ representation, which does not match the other aes_nohw_*
	@ implementations. The ARM aes_nohw_* stores each 32-bit word
	@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
	@ cost of extra REV and VREV32 operations in little-endian ARM.

	vmov.i8	q9, #0x0f		@ Required by _vpaes_schedule_transform
	adr	r2, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
	add	r3, r2, 0x90		@ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)

	vld1.64	{q12}, [r2]
	vmov.i8	q10, #0x5b		@ .Lk_s63 from vpaes-x86_64
	adr	r11, .Lk_opt		@ Must be aligned to 8 mod 16.
	vmov.i8	q11, #0x63		@ .LK_s63 without .Lk_ipt applied

	@ vpaes stores one fewer round count than bsaes, but the number of keys
	@ is the same.
	ldr	r2, [r1,#240]
	add	r2, r2, #1
	str	r2, [r0,#240]

	@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
	@ Invert this with .Lk_opt.
	vld1.64	{q0}, [r1]!
	bl	_vpaes_schedule_transform
	vrev32.8	q0, q0
	vst1.64	{q0}, [r0]!

	@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
	@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
	@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
.Loop_enc_key_to_bsaes:
	vld1.64	{q0}, [r1]!

	@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
	@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
	@ We use r3 rather than r8 to avoid a callee-saved register.
	vld1.64	{q1}, [r3]
	vtbl.8	d4, {q0}, d2
	vtbl.8	d5, {q0}, d3
	add	r3, r3, #16
	and	r3, r3, #~(1<<6)
	vmov	q0, q2

	@ Handle the last key differently.
	subs	r2, r2, #1
	beq	.Loop_enc_key_to_bsaes_last

	@ Multiply by the circulant. This is its own inverse.
	vtbl.8	d2, {q0}, d24
	vtbl.8	d3, {q0}, d25
	vmov	q0, q1
	vtbl.8	d4, {q1}, d24
	vtbl.8	d5, {q1}, d25
	veor	q0, q0, q2
	vtbl.8	d2, {q2}, d24
	vtbl.8	d3, {q2}, d25
	veor	q0, q0, q1

	@ XOR and finish.
	veor	q0, q0, q10
	bl	_vpaes_schedule_transform
	vrev32.8	q0, q0
	vst1.64	{q0}, [r0]!
	b	.Loop_enc_key_to_bsaes

.Loop_enc_key_to_bsaes_last:
	@ The final key does not have a basis transform (note
	@ .Lschedule_mangle_last inverts the original transform). It only XORs
	@ 0x63 and applies ShiftRows. The latter was already inverted in the
	@ loop. Note that, because we act on the original representation, we use
	@ q11, not q10.
	veor	q0, q0, q11
	vrev32.8	q0, q0
	vst1.64	{q0}, [r0]

	@ Wipe registers which contained key material.
	veor	q0, q0, q0
	veor	q1, q1, q1
	veor	q2, q2, q2

	ldmia	sp!, {r11, pc}	@ return
.size	vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes
.globl	vpaes_ctr32_encrypt_blocks
.hidden	vpaes_ctr32_encrypt_blocks
.type	vpaes_ctr32_encrypt_blocks,%function
.align	4
vpaes_ctr32_encrypt_blocks:
	mov	ip, sp
	stmdb	sp!, {r7,r8,r9,r10,r11, lr}
	@ This function uses q4-q7 (d8-d15), which are callee-saved.
	vstmdb	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}

	cmp	r2, #0
	@ r8 is passed on the stack.
	ldr	r8, [ip]
	beq	.Lctr32_done

	@ _vpaes_encrypt_core expects the key in r2, so swap r2 and r3.
	mov	r9, r3
	mov	r3, r2
	mov	r2, r9

	@ Load the IV and counter portion.
	ldr	r7, [r8, #12]
	vld1.8	{q7}, [r8]

	bl	_vpaes_preheat
	rev	r7, r7		@ The counter is big-endian.

.Lctr32_loop:
	vmov	q0, q7
	vld1.8	{q6}, [r0]!		@ .Load input ahead of time
	bl	_vpaes_encrypt_core
	veor	q0, q0, q6		@ XOR input and result
	vst1.8	{q0}, [r1]!
	subs	r3, r3, #1
	@ Update the counter.
	add	r7, r7, #1
	rev	r9, r7
	vmov.32	d15[1], r9
	bne	.Lctr32_loop

.Lctr32_done:
	vldmia	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
	ldmia	sp!, {r7,r8,r9,r10,r11, pc}	@ return
.size	vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks
#endif  // !OPENSSL_NO_ASM && defined(OPENSSL_ARM) && defined(__ELF__)