1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* Copyright 2016 Brian Smith.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "../../limbs/limbs.h"
#include "ecp_nistz384.h"
#include "../bn/internal.h"
#include "../../internal.h"
#include "../../limbs/limbs.inl"
/* XXX: Here we assume that the conversion from |Carry| to |Limb| is
* constant-time, but we haven't verified that assumption. TODO: Fix it so
* we don't need to make that assumption. */
typedef Limb Elem[P384_LIMBS];
typedef Limb ScalarMont[P384_LIMBS];
typedef Limb Scalar[P384_LIMBS];
static const BN_ULONG Q[P384_LIMBS] = {
#if defined(OPENSSL_64_BIT)
0xffffffff, 0xffffffff00000000, 0xfffffffffffffffe, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff
#else
0xffffffff, 0, 0, 0xffffffff, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
#endif
};
static const BN_ULONG N[P384_LIMBS] = {
#if defined(OPENSSL_64_BIT)
0xecec196accc52973, 0x581a0db248b0a77a, 0xc7634d81f4372ddf, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff
#else
0xccc52973, 0xecec196a, 0x48b0a77a, 0x581a0db2, 0xf4372ddf, 0xc7634d81,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
#endif
};
static const BN_ULONG ONE[P384_LIMBS] = {
#if defined(OPENSSL_64_BIT)
0xffffffff00000001, 0xffffffff, 1, 0, 0
#else
1, 0xffffffff, 0xffffffff, 0, 1, 0, 0, 0, 0, 0
#endif
};
static const Elem Q_PLUS_1_SHR_1 = {
#if defined(OPENSSL_64_BIT)
0x80000000, 0x7fffffff80000000, 0xffffffffffffffff, 0xffffffffffffffff,
0xffffffffffffffff, 0x7fffffffffffffff
#else
0x80000000, 0, 0x80000000, 0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7fffffff
#endif
};
static const BN_ULONG Q_N0[] = {
BN_MONT_CTX_N0(1, 1)
};
static const BN_ULONG N_N0[] = {
BN_MONT_CTX_N0(0x6ed46089, 0xe88fdc45)
};
/* XXX: MSVC for x86 warns when it fails to inline these functions it should
* probably inline. */
#if defined(_MSC_VER) && !defined(__clang__) && defined(OPENSSL_X86)
#define INLINE_IF_POSSIBLE __forceinline
#else
#define INLINE_IF_POSSIBLE inline
#endif
static inline Limb is_equal(const Elem a, const Elem b) {
return LIMBS_equal(a, b, P384_LIMBS);
}
static inline Limb is_zero(const BN_ULONG a[P384_LIMBS]) {
return LIMBS_are_zero(a, P384_LIMBS);
}
static inline void copy_conditional(Elem r, const Elem a,
const Limb condition) {
for (size_t i = 0; i < P384_LIMBS; ++i) {
r[i] = constant_time_select_w(condition, a[i], r[i]);
}
}
static inline void elem_add(Elem r, const Elem a, const Elem b) {
LIMBS_add_mod(r, a, b, Q, P384_LIMBS);
}
static inline void elem_sub(Elem r, const Elem a, const Elem b) {
LIMBS_sub_mod(r, a, b, Q, P384_LIMBS);
}
static void elem_div_by_2(Elem r, const Elem a) {
/* Consider the case where `a` is even. Then we can shift `a` right one bit
* and the result will still be valid because we didn't lose any bits and so
* `(a >> 1) * 2 == a (mod q)`, which is the invariant we must satisfy.
*
* The remainder of this comment is considering the case where `a` is odd.
*
* Since `a` is odd, it isn't the case that `(a >> 1) * 2 == a (mod q)`
* because the lowest bit is lost during the shift. For example, consider:
*
* ```python
* q = 2**384 - 2**128 - 2**96 + 2**32 - 1
* a = 2**383
* two_a = a * 2 % q
* assert two_a == 0x100000000ffffffffffffffff00000001
* ```
*
* Notice there how `(2 * a) % q` wrapped around to a smaller odd value. When
* we divide `two_a` by two (mod q), we need to get the value `2**383`, which
* we obviously can't get with just a right shift.
*
* `q` is odd, and `a` is odd, so `a + q` is even. We could calculate
* `(a + q) >> 1` and then reduce it mod `q`. However, then we would have to
* keep track of an extra most significant bit. We can avoid that by instead
* calculating `(a >> 1) + ((q + 1) >> 1)`. The `1` in `q + 1` is the least
* significant bit of `a`. `q + 1` is even, which means it can be shifted
* without losing any bits. Since `q` is odd, `q - 1` is even, so the largest
* odd field element is `q - 2`. Thus we know that `a <= q - 2`. We know
* `(q + 1) >> 1` is `(q + 1) / 2` since (`q + 1`) is even. The value of
* `a >> 1` is `(a - 1)/2` since the shift will drop the least significant
* bit of `a`, which is 1. Thus:
*
* sum = ((q + 1) >> 1) + (a >> 1)
* sum = (q + 1)/2 + (a >> 1) (substituting (q + 1)/2)
* <= (q + 1)/2 + (q - 2 - 1)/2 (substituting a <= q - 2)
* <= (q + 1)/2 + (q - 3)/2 (simplifying)
* <= (q + 1 + q - 3)/2 (factoring out the common divisor)
* <= (2q - 2)/2 (simplifying)
* <= q - 1 (simplifying)
*
* Thus, no reduction of the sum mod `q` is necessary. */
Limb is_odd = constant_time_is_nonzero_w(a[0] & 1);
/* r = a >> 1. */
Limb carry = a[P384_LIMBS - 1] & 1;
r[P384_LIMBS - 1] = a[P384_LIMBS - 1] >> 1;
for (size_t i = 1; i < P384_LIMBS; ++i) {
Limb new_carry = a[P384_LIMBS - i - 1];
r[P384_LIMBS - i - 1] =
(a[P384_LIMBS - i - 1] >> 1) | (carry << (LIMB_BITS - 1));
carry = new_carry;
}
Elem adjusted;
BN_ULONG carry2 = limbs_add(adjusted, r, Q_PLUS_1_SHR_1, P384_LIMBS);
dev_assert_secret(carry2 == 0);
(void)carry2;
copy_conditional(r, adjusted, is_odd);
}
static inline void elem_mul_mont(Elem r, const Elem a, const Elem b) {
/* XXX: Not (clearly) constant-time; inefficient.*/
bn_mul_mont_small(r, a, b, Q, Q_N0, P384_LIMBS);
}
static inline void elem_mul_by_2(Elem r, const Elem a) {
LIMBS_shl_mod(r, a, Q, P384_LIMBS);
}
static INLINE_IF_POSSIBLE void elem_mul_by_3(Elem r, const Elem a) {
/* XXX: inefficient. TODO: Replace with an integrated shift + add. */
Elem doubled;
elem_add(doubled, a, a);
elem_add(r, doubled, a);
}
static inline void elem_sqr_mont(Elem r, const Elem a) {
/* XXX: Inefficient. TODO: Add a dedicated squaring routine. */
elem_mul_mont(r, a, a);
}
void p384_elem_sub(Elem r, const Elem a, const Elem b) {
elem_sub(r, a, b);
}
void p384_elem_div_by_2(Elem r, const Elem a) {
elem_div_by_2(r, a);
}
void p384_elem_mul_mont(Elem r, const Elem a, const Elem b) {
elem_mul_mont(r, a, b);
}
void p384_elem_neg(Elem r, const Elem a) {
Limb is_zero = LIMBS_are_zero(a, P384_LIMBS);
Carry borrow = limbs_sub(r, Q, a, P384_LIMBS);
dev_assert_secret(borrow == 0);
(void)borrow;
for (size_t i = 0; i < P384_LIMBS; ++i) {
r[i] = constant_time_select_w(is_zero, 0, r[i]);
}
}
void p384_scalar_mul_mont(ScalarMont r, const ScalarMont a,
const ScalarMont b) {
/* XXX: Inefficient. TODO: Add dedicated multiplication routine. */
bn_mul_mont_small(r, a, b, N, N_N0, P384_LIMBS);
}
/* TODO(perf): Optimize this. */
static void p384_point_select_w5(P384_POINT *out,
const P384_POINT table[16], size_t index) {
Elem x; limbs_zero(x, P384_LIMBS);
Elem y; limbs_zero(y, P384_LIMBS);
Elem z; limbs_zero(z, P384_LIMBS);
// TODO: Rewrite in terms of |limbs_select|.
for (size_t i = 0; i < 16; ++i) {
crypto_word_t equal = constant_time_eq_w(index, (crypto_word_t)i + 1);
for (size_t j = 0; j < P384_LIMBS; ++j) {
x[j] = constant_time_select_w(equal, table[i].X[j], x[j]);
y[j] = constant_time_select_w(equal, table[i].Y[j], y[j]);
z[j] = constant_time_select_w(equal, table[i].Z[j], z[j]);
}
}
limbs_copy(out->X, x, P384_LIMBS);
limbs_copy(out->Y, y, P384_LIMBS);
limbs_copy(out->Z, z, P384_LIMBS);
}
#include "ecp_nistz384.inl"
|