1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/*!
The main entry point into ripgrep.
*/
use std::{io::Write, process::ExitCode};
use ignore::WalkState;
use crate::flags::{HiArgs, SearchMode};
#[macro_use]
mod messages;
mod flags;
mod haystack;
mod logger;
mod search;
// Since Rust no longer uses jemalloc by default, ripgrep will, by default,
// use the system allocator. On Linux, this would normally be glibc's
// allocator, which is pretty good. In particular, ripgrep does not have a
// particularly allocation heavy workload, so there really isn't much
// difference (for ripgrep's purposes) between glibc's allocator and jemalloc.
//
// However, when ripgrep is built with musl, this means ripgrep will use musl's
// allocator, which appears to be substantially worse. (musl's goal is not to
// have the fastest version of everything. Its goal is to be small and amenable
// to static compilation.) Even though ripgrep isn't particularly allocation
// heavy, musl's allocator appears to slow down ripgrep quite a bit. Therefore,
// when building with musl, we use jemalloc.
//
// We don't unconditionally use jemalloc because it can be nice to use the
// system's default allocator by default. Moreover, jemalloc seems to increase
// compilation times by a bit.
//
// Moreover, we only do this on 64-bit systems since jemalloc doesn't support
// i686.
#[cfg(all(target_env = "musl", target_pointer_width = "64"))]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
/// Then, as it was, then again it will be.
fn main() -> ExitCode {
match run(flags::parse()) {
Ok(code) => code,
Err(err) => {
// Look for a broken pipe error. In this case, we generally want
// to exit "gracefully" with a success exit code. This matches
// existing Unix convention. We need to handle this explicitly
// since the Rust runtime doesn't ask for PIPE signals, and thus
// we get an I/O error instead. Traditional C Unix applications
// quit by getting a PIPE signal that they don't handle, and thus
// the unhandled signal causes the process to unceremoniously
// terminate.
for cause in err.chain() {
if let Some(ioerr) = cause.downcast_ref::<std::io::Error>() {
if ioerr.kind() == std::io::ErrorKind::BrokenPipe {
return ExitCode::from(0);
}
}
}
eprintln_locked!("{:#}", err);
ExitCode::from(2)
}
}
}
/// The main entry point for ripgrep.
///
/// The given parse result determines ripgrep's behavior. The parse
/// result should be the result of parsing CLI arguments in a low level
/// representation, and then followed by an attempt to convert them into a
/// higher level representation. The higher level representation has some nicer
/// abstractions, for example, instead of representing the `-g/--glob` flag
/// as a `Vec<String>` (as in the low level representation), the globs are
/// converted into a single matcher.
fn run(result: crate::flags::ParseResult<HiArgs>) -> anyhow::Result<ExitCode> {
use crate::flags::{Mode, ParseResult};
let args = match result {
ParseResult::Err(err) => return Err(err),
ParseResult::Special(mode) => return special(mode),
ParseResult::Ok(args) => args,
};
let matched = match args.mode() {
Mode::Search(_) if !args.matches_possible() => false,
Mode::Search(mode) if args.threads() == 1 => search(&args, mode)?,
Mode::Search(mode) => search_parallel(&args, mode)?,
Mode::Files if args.threads() == 1 => files(&args)?,
Mode::Files => files_parallel(&args)?,
Mode::Types => return types(&args),
Mode::Generate(mode) => return generate(mode),
};
Ok(if matched && (args.quiet() || !messages::errored()) {
ExitCode::from(0)
} else if messages::errored() {
ExitCode::from(2)
} else {
ExitCode::from(1)
})
}
/// The top-level entry point for single-threaded search.
///
/// This recursively steps through the file list (current directory by default)
/// and searches each file sequentially.
fn search(args: &HiArgs, mode: SearchMode) -> anyhow::Result<bool> {
let started_at = std::time::Instant::now();
let haystack_builder = args.haystack_builder();
let unsorted = args
.walk_builder()?
.build()
.filter_map(|result| haystack_builder.build_from_result(result));
let haystacks = args.sort(unsorted);
let mut matched = false;
let mut searched = false;
let mut stats = args.stats();
let mut searcher = args.search_worker(
args.matcher()?,
args.searcher()?,
args.printer(mode, args.stdout()),
)?;
for haystack in haystacks {
searched = true;
let search_result = match searcher.search(&haystack) {
Ok(search_result) => search_result,
// A broken pipe means graceful termination.
Err(err) if err.kind() == std::io::ErrorKind::BrokenPipe => break,
Err(err) => {
err_message!("{}: {}", haystack.path().display(), err);
continue;
}
};
matched = matched || search_result.has_match();
if let Some(ref mut stats) = stats {
*stats += search_result.stats().unwrap();
}
if matched && args.quit_after_match() {
break;
}
}
if args.has_implicit_path() && !searched {
eprint_nothing_searched();
}
if let Some(ref stats) = stats {
let wtr = searcher.printer().get_mut();
let _ = print_stats(mode, stats, started_at, wtr);
}
Ok(matched)
}
/// The top-level entry point for multi-threaded search.
///
/// The parallelism is itself achieved by the recursive directory traversal.
/// All we need to do is feed it a worker for performing a search on each file.
///
/// Requesting a sorted output from ripgrep (such as with `--sort path`) will
/// automatically disable parallelism and hence sorting is not handled here.
fn search_parallel(args: &HiArgs, mode: SearchMode) -> anyhow::Result<bool> {
use std::sync::atomic::{AtomicBool, Ordering};
let started_at = std::time::Instant::now();
let haystack_builder = args.haystack_builder();
let bufwtr = args.buffer_writer();
let stats = args.stats().map(std::sync::Mutex::new);
let matched = AtomicBool::new(false);
let searched = AtomicBool::new(false);
let mut searcher = args.search_worker(
args.matcher()?,
args.searcher()?,
args.printer(mode, bufwtr.buffer()),
)?;
args.walk_builder()?.build_parallel().run(|| {
let bufwtr = &bufwtr;
let stats = &stats;
let matched = &matched;
let searched = &searched;
let haystack_builder = &haystack_builder;
let mut searcher = searcher.clone();
Box::new(move |result| {
let haystack = match haystack_builder.build_from_result(result) {
Some(haystack) => haystack,
None => return WalkState::Continue,
};
searched.store(true, Ordering::SeqCst);
searcher.printer().get_mut().clear();
let search_result = match searcher.search(&haystack) {
Ok(search_result) => search_result,
Err(err) => {
err_message!("{}: {}", haystack.path().display(), err);
return WalkState::Continue;
}
};
if search_result.has_match() {
matched.store(true, Ordering::SeqCst);
}
if let Some(ref locked_stats) = *stats {
let mut stats = locked_stats.lock().unwrap();
*stats += search_result.stats().unwrap();
}
if let Err(err) = bufwtr.print(searcher.printer().get_mut()) {
// A broken pipe means graceful termination.
if err.kind() == std::io::ErrorKind::BrokenPipe {
return WalkState::Quit;
}
// Otherwise, we continue on our merry way.
err_message!("{}: {}", haystack.path().display(), err);
}
if matched.load(Ordering::SeqCst) && args.quit_after_match() {
WalkState::Quit
} else {
WalkState::Continue
}
})
});
if args.has_implicit_path() && !searched.load(Ordering::SeqCst) {
eprint_nothing_searched();
}
if let Some(ref locked_stats) = stats {
let stats = locked_stats.lock().unwrap();
let mut wtr = searcher.printer().get_mut();
let _ = print_stats(mode, &stats, started_at, &mut wtr);
let _ = bufwtr.print(&mut wtr);
}
Ok(matched.load(Ordering::SeqCst))
}
/// The top-level entry point for file listing without searching.
///
/// This recursively steps through the file list (current directory by default)
/// and prints each path sequentially using a single thread.
fn files(args: &HiArgs) -> anyhow::Result<bool> {
let haystack_builder = args.haystack_builder();
let unsorted = args
.walk_builder()?
.build()
.filter_map(|result| haystack_builder.build_from_result(result));
let haystacks = args.sort(unsorted);
let mut matched = false;
let mut path_printer = args.path_printer_builder().build(args.stdout());
for haystack in haystacks {
matched = true;
if args.quit_after_match() {
break;
}
if let Err(err) = path_printer.write(haystack.path()) {
// A broken pipe means graceful termination.
if err.kind() == std::io::ErrorKind::BrokenPipe {
break;
}
// Otherwise, we have some other error that's preventing us from
// writing to stdout, so we should bubble it up.
return Err(err.into());
}
}
Ok(matched)
}
/// The top-level entry point for multi-threaded file listing without
/// searching.
///
/// This recursively steps through the file list (current directory by default)
/// and prints each path sequentially using multiple threads.
///
/// Requesting a sorted output from ripgrep (such as with `--sort path`) will
/// automatically disable parallelism and hence sorting is not handled here.
fn files_parallel(args: &HiArgs) -> anyhow::Result<bool> {
use std::{
sync::{
atomic::{AtomicBool, Ordering},
mpsc,
},
thread,
};
let haystack_builder = args.haystack_builder();
let mut path_printer = args.path_printer_builder().build(args.stdout());
let matched = AtomicBool::new(false);
let (tx, rx) = mpsc::channel::<crate::haystack::Haystack>();
// We spawn a single printing thread to make sure we don't tear writes.
// We use a channel here under the presumption that it's probably faster
// than using a mutex in the worker threads below, but this has never been
// seriously litigated.
let print_thread = thread::spawn(move || -> std::io::Result<()> {
for haystack in rx.iter() {
path_printer.write(haystack.path())?;
}
Ok(())
});
args.walk_builder()?.build_parallel().run(|| {
let haystack_builder = &haystack_builder;
let matched = &matched;
let tx = tx.clone();
Box::new(move |result| {
let haystack = match haystack_builder.build_from_result(result) {
Some(haystack) => haystack,
None => return WalkState::Continue,
};
matched.store(true, Ordering::SeqCst);
if args.quit_after_match() {
WalkState::Quit
} else {
match tx.send(haystack) {
Ok(_) => WalkState::Continue,
Err(_) => WalkState::Quit,
}
}
})
});
drop(tx);
if let Err(err) = print_thread.join().unwrap() {
// A broken pipe means graceful termination, so fall through.
// Otherwise, something bad happened while writing to stdout, so bubble
// it up.
if err.kind() != std::io::ErrorKind::BrokenPipe {
return Err(err.into());
}
}
Ok(matched.load(Ordering::SeqCst))
}
/// The top-level entry point for `--type-list`.
fn types(args: &HiArgs) -> anyhow::Result<ExitCode> {
let mut count = 0;
let mut stdout = args.stdout();
for def in args.types().definitions() {
count += 1;
stdout.write_all(def.name().as_bytes())?;
stdout.write_all(b": ")?;
let mut first = true;
for glob in def.globs() {
if !first {
stdout.write_all(b", ")?;
}
stdout.write_all(glob.as_bytes())?;
first = false;
}
stdout.write_all(b"\n")?;
}
Ok(ExitCode::from(if count == 0 { 1 } else { 0 }))
}
/// Implements ripgrep's "generate" modes.
///
/// These modes correspond to generating some kind of ancillary data related
/// to ripgrep. At present, this includes ripgrep's man page (in roff format)
/// and supported shell completions.
fn generate(mode: crate::flags::GenerateMode) -> anyhow::Result<ExitCode> {
use crate::flags::GenerateMode;
let output = match mode {
GenerateMode::Man => flags::generate_man_page(),
GenerateMode::CompleteBash => flags::generate_complete_bash(),
GenerateMode::CompleteZsh => flags::generate_complete_zsh(),
GenerateMode::CompleteFish => flags::generate_complete_fish(),
GenerateMode::CompletePowerShell => {
flags::generate_complete_powershell()
}
};
writeln!(std::io::stdout(), "{}", output.trim_end())?;
Ok(ExitCode::from(0))
}
/// Implements ripgrep's "special" modes.
///
/// A special mode is one that generally short-circuits most (not all) of
/// ripgrep's initialization logic and skips right to this routine. The
/// special modes essentially consist of printing help and version output. The
/// idea behind the short circuiting is to ensure there is as little as possible
/// (within reason) that would prevent ripgrep from emitting help output.
///
/// For example, part of the initialization logic that is skipped (among
/// other things) is accessing the current working directory. If that fails,
/// ripgrep emits an error. We don't want to emit an error if it fails and
/// the user requested version or help information.
fn special(mode: crate::flags::SpecialMode) -> anyhow::Result<ExitCode> {
use crate::flags::SpecialMode;
let mut exit = ExitCode::from(0);
let output = match mode {
SpecialMode::HelpShort => flags::generate_help_short(),
SpecialMode::HelpLong => flags::generate_help_long(),
SpecialMode::VersionShort => flags::generate_version_short(),
SpecialMode::VersionLong => flags::generate_version_long(),
// --pcre2-version is a little special because it emits an error
// exit code if this build of ripgrep doesn't support PCRE2.
SpecialMode::VersionPCRE2 => {
let (output, available) = flags::generate_version_pcre2();
if !available {
exit = ExitCode::from(1);
}
output
}
};
writeln!(std::io::stdout(), "{}", output.trim_end())?;
Ok(exit)
}
/// Prints a heuristic error messages when nothing is searched.
///
/// This can happen if an applicable ignore file has one or more rules that
/// are too broad and cause ripgrep to ignore everything.
///
/// We only show this error message when the user does *not* provide an
/// explicit path to search. This is because the message can otherwise be
/// noisy, e.g., when it is intended that there is nothing to search.
fn eprint_nothing_searched() {
err_message!(
"No files were searched, which means ripgrep probably \
applied a filter you didn't expect.\n\
Running with --debug will show why files are being skipped."
);
}
/// Prints the statistics given to the writer given.
///
/// The search mode given determines whether the stats should be printed in
/// a plain text format or in a JSON format.
///
/// The `started` time should be the time at which ripgrep started working.
///
/// If an error occurs while writing, then writing stops and the error is
/// returned. Note that callers should probably ignore this errror, since
/// whether stats fail to print or not generally shouldn't cause ripgrep to
/// enter into an "error" state. And usually the only way for this to fail is
/// if writing to stdout itself fails.
fn print_stats<W: Write>(
mode: SearchMode,
stats: &grep::printer::Stats,
started: std::time::Instant,
mut wtr: W,
) -> std::io::Result<()> {
let elapsed = std::time::Instant::now().duration_since(started);
if matches!(mode, SearchMode::JSON) {
// We specifically match the format laid out by the JSON printer in
// the grep-printer crate. We simply "extend" it with the 'summary'
// message type.
serde_json::to_writer(
&mut wtr,
&serde_json::json!({
"type": "summary",
"data": {
"stats": stats,
"elapsed_total": {
"secs": elapsed.as_secs(),
"nanos": elapsed.subsec_nanos(),
"human": format!("{:0.6}s", elapsed.as_secs_f64()),
},
}
}),
)?;
write!(wtr, "\n")
} else {
write!(
wtr,
"
{matches} matches
{lines} matched lines
{searches_with_match} files contained matches
{searches} files searched
{bytes_printed} bytes printed
{bytes_searched} bytes searched
{search_time:0.6} seconds spent searching
{process_time:0.6} seconds
",
matches = stats.matches(),
lines = stats.matched_lines(),
searches_with_match = stats.searches_with_match(),
searches = stats.searches(),
bytes_printed = stats.bytes_printed(),
bytes_searched = stats.bytes_searched(),
search_time = stats.elapsed().as_secs_f64(),
process_time = elapsed.as_secs_f64(),
)
}
}
|