File: decimal.rs

package info (click to toggle)
rust-rust-decimal 1.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 348 kB
  • sloc: makefile: 2
file content (3159 lines) | stat: -rw-r--r-- 103,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
use crate::Error;
use alloc::{string::String, vec::Vec};
use core::{
    cmp::{Ordering::Equal, *},
    fmt,
    hash::{Hash, Hasher},
    iter::{repeat, Sum},
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
    str::FromStr,
};
#[cfg(feature = "diesel")]
use diesel::sql_types::Numeric;
use num_traits::{FromPrimitive, Num, One, Signed, ToPrimitive, Zero};

// Sign mask for the flags field. A value of zero in this bit indicates a
// positive Decimal value, and a value of one in this bit indicates a
// negative Decimal value.
const SIGN_MASK: u32 = 0x8000_0000;
const UNSIGN_MASK: u32 = 0x4FFF_FFFF;

// Scale mask for the flags field. This byte in the flags field contains
// the power of 10 to divide the Decimal value by. The scale byte must
// contain a value between 0 and 28 inclusive.
const SCALE_MASK: u32 = 0x00FF_0000;
const U8_MASK: u32 = 0x0000_00FF;
const U32_MASK: u64 = 0xFFFF_FFFF;

// Number of bits scale is shifted by.
const SCALE_SHIFT: u32 = 16;
// Number of bits sign is shifted by.
const SIGN_SHIFT: u32 = 31;

// The maximum supported precision
pub(crate) const MAX_PRECISION: u32 = 28;
// 79,228,162,514,264,337,593,543,950,335
const MAX_I128_REPR: i128 = 0x0000_0000_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF;

static ONE_INTERNAL_REPR: [u32; 3] = [1, 0, 0];

const MIN: Decimal = Decimal {
    flags: 2_147_483_648,
    lo: 4_294_967_295,
    mid: 4_294_967_295,
    hi: 4_294_967_295,
};

const MAX: Decimal = Decimal {
    flags: 0,
    lo: 4_294_967_295,
    mid: 4_294_967_295,
    hi: 4_294_967_295,
};

// Fast access for 10^n where n is 0-9
static POWERS_10: [u32; 10] = [
    1,
    10,
    100,
    1_000,
    10_000,
    100_000,
    1_000_000,
    10_000_000,
    100_000_000,
    1_000_000_000,
];
// Fast access for 10^n where n is 10-19
#[allow(dead_code)]
static BIG_POWERS_10: [u64; 10] = [
    10_000_000_000,
    100_000_000_000,
    1_000_000_000_000,
    10_000_000_000_000,
    100_000_000_000_000,
    1_000_000_000_000_000,
    10_000_000_000_000_000,
    100_000_000_000_000_000,
    1_000_000_000_000_000_000,
    10_000_000_000_000_000_000,
];

/// `UnpackedDecimal` contains unpacked representation of `Decimal` where each component
/// of decimal-format stored in it's own field
#[derive(Clone, Copy, Debug)]
pub struct UnpackedDecimal {
    pub is_negative: bool,
    pub scale: u32,
    pub hi: u32,
    pub mid: u32,
    pub lo: u32,
}

/// `Decimal` represents a 128 bit representation of a fixed-precision decimal number.
/// The finite set of values of type `Decimal` are of the form m / 10<sup>e</sup>,
/// where m is an integer such that -2<sup>96</sup> < m < 2<sup>96</sup>, and e is an integer
/// between 0 and 28 inclusive.
#[derive(Clone, Copy)]
#[cfg_attr(feature = "diesel", derive(FromSqlRow, AsExpression), sql_type = "Numeric")]
pub struct Decimal {
    // Bits 0-15: unused
    // Bits 16-23: Contains "e", a value between 0-28 that indicates the scale
    // Bits 24-30: unused
    // Bit 31: the sign of the Decimal value, 0 meaning positive and 1 meaning negative.
    flags: u32,
    // The lo, mid, hi, and flags fields contain the representation of the
    // Decimal value as a 96-bit integer.
    hi: u32,
    lo: u32,
    mid: u32,
}

/// `RoundingStrategy` represents the different strategies that can be used by
/// `round_dp_with_strategy`.
///
/// `RoundingStrategy::BankersRounding` - Rounds toward the nearest even number, e.g. 6.5 -> 6, 7.5 -> 8
/// `RoundingStrategy::RoundHalfUp` - Rounds up if the value >= 5, otherwise rounds down, e.g. 6.5 -> 7,
/// `RoundingStrategy::RoundHalfDown` - Rounds down if the value =< 5, otherwise rounds up, e.g.
/// 6.5 -> 6, 6.51 -> 7
/// 1.4999999 -> 1
/// `RoundingStrategy::RoundDown` - Always round down.
/// `RoundingStrategy::RoundUp` - Always round up.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum RoundingStrategy {
    BankersRounding,
    RoundHalfUp,
    RoundHalfDown,
    RoundDown,
    RoundUp,
}

#[allow(dead_code)]
impl Decimal {
    /// Returns a `Decimal` with a 64 bit `m` representation and corresponding `e` scale.
    ///
    /// # Arguments
    ///
    /// * `num` - An i64 that represents the `m` portion of the decimal number
    /// * `scale` - A u32 representing the `e` portion of the decimal number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// assert_eq!(pi.to_string(), "3.141");
    /// ```
    pub fn new(num: i64, scale: u32) -> Decimal {
        if scale > MAX_PRECISION {
            panic!(
                "Scale exceeds the maximum precision allowed: {} > {}",
                scale, MAX_PRECISION
            );
        }
        let flags: u32 = scale << SCALE_SHIFT;
        if num < 0 {
            let pos_num = num.wrapping_neg() as u64;
            return Decimal {
                flags: flags | SIGN_MASK,
                hi: 0,
                lo: (pos_num & U32_MASK) as u32,
                mid: ((pos_num >> 32) & U32_MASK) as u32,
            };
        }
        Decimal {
            flags,
            hi: 0,
            lo: (num as u64 & U32_MASK) as u32,
            mid: ((num as u64 >> 32) & U32_MASK) as u32,
        }
    }

    /// Creates a `Decimal` using a 128 bit signed `m` representation and corresponding `e` scale.
    ///
    /// # Arguments
    ///
    /// * `num` - An i128 that represents the `m` portion of the decimal number
    /// * `scale` - A u32 representing the `e` portion of the decimal number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::from_i128_with_scale(3141i128, 3);
    /// assert_eq!(pi.to_string(), "3.141");
    /// ```
    pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal {
        if scale > MAX_PRECISION {
            panic!(
                "Scale exceeds the maximum precision allowed: {} > {}",
                scale, MAX_PRECISION
            );
        }
        let mut neg = false;
        let mut wrapped = num;
        if num > MAX_I128_REPR {
            panic!("Number exceeds maximum value that can be represented");
        } else if num < -MAX_I128_REPR {
            panic!("Number less than minimum value that can be represented");
        } else if num < 0 {
            neg = true;
            wrapped = -num;
        }
        let flags: u32 = flags(neg, scale);
        Decimal {
            flags,
            lo: (wrapped as u64 & U32_MASK) as u32,
            mid: ((wrapped as u64 >> 32) & U32_MASK) as u32,
            hi: ((wrapped as u128 >> 64) as u64 & U32_MASK) as u32,
        }
    }

    /// Returns a `Decimal` using the instances constituent parts.
    ///
    /// # Arguments
    ///
    /// * `lo` - The low 32 bits of a 96-bit integer.
    /// * `mid` - The middle 32 bits of a 96-bit integer.
    /// * `hi` - The high 32 bits of a 96-bit integer.
    /// * `negative` - `true` to indicate a negative number.
    /// * `scale` - A power of 10 ranging from 0 to 28.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
    /// assert_eq!(pi.to_string(), "3.1415926535897932384626433832");
    /// ```
    pub const fn from_parts(lo: u32, mid: u32, hi: u32, negative: bool, scale: u32) -> Decimal {
        Decimal {
            lo,
            mid,
            hi,
            flags: flags(negative, scale),
        }
    }

    /// Returns a `Result` which if successful contains the `Decimal` constitution of
    /// the scientific notation provided by `value`.
    ///
    /// # Arguments
    ///
    /// * `value` - The scientific notation of the `Decimal`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let value = Decimal::from_scientific("9.7e-7").unwrap();
    /// assert_eq!(value.to_string(), "0.00000097");
    /// ```
    pub fn from_scientific(value: &str) -> Result<Decimal, Error> {
        let err = Error::new("Failed to parse");
        let mut split = value.splitn(2, |c| c == 'e' || c == 'E');

        let base = split.next().ok_or_else(|| err.clone())?;
        let exp = split.next().ok_or_else(|| err.clone())?;

        let mut ret = Decimal::from_str(base)?;
        let current_scale = ret.scale();

        if exp.starts_with('-') {
            let exp: u32 = exp[1..].parse().map_err(move |_| err)?;
            ret.set_scale(current_scale + exp)?;
        } else {
            let exp: u32 = exp.parse().map_err(move |_| err)?;
            if exp <= current_scale {
                ret.set_scale(current_scale - exp)?;
            } else {
                ret *= Decimal::from_i64(10_i64.pow(exp)).unwrap();
                ret = ret.normalize();
            }
        }
        Ok(ret)
    }

    /// Returns the scale of the decimal number, otherwise known as `e`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(1234, 3);
    /// assert_eq!(num.scale(), 3u32);
    /// ```
    #[inline]
    pub const fn scale(&self) -> u32 {
        ((self.flags & SCALE_MASK) >> SCALE_SHIFT) as u32
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `positive`: true if the resulting decimal should be positive.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign(false);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[deprecated(since = "1.4.0", note = "please use `set_sign_positive` instead")]
    pub fn set_sign(&mut self, positive: bool) {
        self.set_sign_positive(positive);
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `positive`: true if the resulting decimal should be positive.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign_positive(false);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[inline(always)]
    pub fn set_sign_positive(&mut self, positive: bool) {
        if positive {
            self.flags &= UNSIGN_MASK;
        } else {
            self.flags |= SIGN_MASK;
        }
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `negative`: true if the resulting decimal should be negative.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign_negative(true);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[inline(always)]
    pub fn set_sign_negative(&mut self, negative: bool) {
        self.set_sign_positive(!negative);
    }

    /// An optimized method for changing the scale of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `scale`: the new scale of the number
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_scale(5);
    /// assert_eq!(one.to_string(), "0.00001");
    /// ```
    pub fn set_scale(&mut self, scale: u32) -> Result<(), Error> {
        if scale > MAX_PRECISION {
            return Err(Error::new("Scale exceeds maximum precision"));
        }
        self.flags = (scale << SCALE_SHIFT) | (self.flags & SIGN_MASK);
        Ok(())
    }

    /// Modifies the `Decimal` to the given scale, attempting to do so without changing the
    /// underlying number itself.
    ///
    /// Note that setting the scale to something less then the current `Decimal`s scale will
    /// cause the newly created `Decimal` to have some rounding.
    /// Scales greater than the maximum precision supported by `Decimal` will be automatically
    /// rounded to `Decimal::MAX_PRECISION`.
    /// Rounding leverages the half up strategy.
    ///
    /// # Arguments
    /// * `scale`: The scale to use for the new `Decimal` number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut number = Decimal::new(1_123, 3);
    /// number.rescale(6);
    /// assert_eq!(number, Decimal::new(1_123_000, 6));
    /// let mut round = Decimal::new(145, 2);
    /// round.rescale(1);
    /// assert_eq!(round, Decimal::new(15, 1));
    /// ```
    pub fn rescale(&mut self, scale: u32) {
        let mut array = [self.lo, self.mid, self.hi];
        let mut value_scale = self.scale();
        rescale_internal(&mut array, &mut value_scale, scale);
        self.lo = array[0];
        self.mid = array[1];
        self.hi = array[2];
        self.flags = flags(self.is_sign_negative(), value_scale);
    }

    /// Returns a serialized version of the decimal number.
    /// The resulting byte array will have the following representation:
    ///
    /// * Bytes 1-4: flags
    /// * Bytes 5-8: lo portion of `m`
    /// * Bytes 9-12: mid portion of `m`
    /// * Bytes 13-16: high portion of `m`
    pub const fn serialize(&self) -> [u8; 16] {
        [
            (self.flags & U8_MASK) as u8,
            ((self.flags >> 8) & U8_MASK) as u8,
            ((self.flags >> 16) & U8_MASK) as u8,
            ((self.flags >> 24) & U8_MASK) as u8,
            (self.lo & U8_MASK) as u8,
            ((self.lo >> 8) & U8_MASK) as u8,
            ((self.lo >> 16) & U8_MASK) as u8,
            ((self.lo >> 24) & U8_MASK) as u8,
            (self.mid & U8_MASK) as u8,
            ((self.mid >> 8) & U8_MASK) as u8,
            ((self.mid >> 16) & U8_MASK) as u8,
            ((self.mid >> 24) & U8_MASK) as u8,
            (self.hi & U8_MASK) as u8,
            ((self.hi >> 8) & U8_MASK) as u8,
            ((self.hi >> 16) & U8_MASK) as u8,
            ((self.hi >> 24) & U8_MASK) as u8,
        ]
    }

    /// Deserializes the given bytes into a decimal number.
    /// The deserialized byte representation must be 16 bytes and adhere to the followign convention:
    ///
    /// * Bytes 1-4: flags
    /// * Bytes 5-8: lo portion of `m`
    /// * Bytes 9-12: mid portion of `m`
    /// * Bytes 13-16: high portion of `m`
    pub const fn deserialize(bytes: [u8; 16]) -> Decimal {
        Decimal {
            flags: (bytes[0] as u32) | (bytes[1] as u32) << 8 | (bytes[2] as u32) << 16 | (bytes[3] as u32) << 24,
            lo: (bytes[4] as u32) | (bytes[5] as u32) << 8 | (bytes[6] as u32) << 16 | (bytes[7] as u32) << 24,
            mid: (bytes[8] as u32) | (bytes[9] as u32) << 8 | (bytes[10] as u32) << 16 | (bytes[11] as u32) << 24,
            hi: (bytes[12] as u32) | (bytes[13] as u32) << 8 | (bytes[14] as u32) << 16 | (bytes[15] as u32) << 24,
        }
    }

    /// Returns `true` if the decimal is negative.
    #[deprecated(since = "0.6.3", note = "please use `is_sign_negative` instead")]
    pub fn is_negative(&self) -> bool {
        self.is_sign_negative()
    }

    /// Returns `true` if the decimal is positive.
    #[deprecated(since = "0.6.3", note = "please use `is_sign_positive` instead")]
    pub fn is_positive(&self) -> bool {
        self.is_sign_positive()
    }

    /// Returns `true` if the sign bit of the decimal is negative.
    #[inline(always)]
    pub const fn is_sign_negative(&self) -> bool {
        self.flags & SIGN_MASK > 0
    }

    /// Returns `true` if the sign bit of the decimal is positive.
    #[inline(always)]
    pub const fn is_sign_positive(&self) -> bool {
        self.flags & SIGN_MASK == 0
    }

    /// Returns the minimum possible number that `Decimal` can represent.
    pub const fn min_value() -> Decimal {
        MIN
    }

    /// Returns the maximum possible number that `Decimal` can represent.
    pub const fn max_value() -> Decimal {
        MAX
    }

    /// Returns a new `Decimal` integral with no fractional portion.
    /// This is a true truncation whereby no rounding is performed.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// let trunc = Decimal::new(3, 0);
    /// // note that it returns a decimal
    /// assert_eq!(pi.trunc(), trunc);
    /// ```
    pub fn trunc(&self) -> Decimal {
        let mut scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }
        let mut working = [self.lo, self.mid, self.hi];
        while scale > 0 {
            // We're removing precision, so we don't care about overflow
            if scale < 10 {
                div_by_u32(&mut working, POWERS_10[scale as usize]);
                break;
            } else {
                div_by_u32(&mut working, POWERS_10[9]);
                // Only 9 as this array starts with 1
                scale -= 9;
            }
        }
        Decimal {
            lo: working[0],
            mid: working[1],
            hi: working[2],
            flags: flags(self.is_sign_negative(), 0),
        }
    }

    /// Returns a new `Decimal` representing the fractional portion of the number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// let fract = Decimal::new(141, 3);
    /// // note that it returns a decimal
    /// assert_eq!(pi.fract(), fract);
    /// ```
    pub fn fract(&self) -> Decimal {
        // This is essentially the original number minus the integral.
        // Could possibly be optimized in the future
        *self - self.trunc()
    }

    /// Computes the absolute value of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(-3141, 3);
    /// assert_eq!(num.abs().to_string(), "3.141");
    /// ```
    pub fn abs(&self) -> Decimal {
        let mut me = *self;
        me.set_sign_positive(true);
        me
    }

    /// Returns the largest integer less than or equal to a number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(3641, 3);
    /// assert_eq!(num.floor().to_string(), "3");
    /// ```
    pub fn floor(&self) -> Decimal {
        let scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        // Opportunity for optimization here
        let floored = self.trunc();
        if self.is_sign_negative() && !self.fract().is_zero() {
            floored - Decimal::one()
        } else {
            floored
        }
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(3141, 3);
    /// assert_eq!(num.ceil().to_string(), "4");
    /// let num = Decimal::new(3, 0);
    /// assert_eq!(num.ceil().to_string(), "3");
    /// ```
    pub fn ceil(&self) -> Decimal {
        let scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        // Opportunity for optimization here
        if self.is_sign_positive() && !self.fract().is_zero() {
            self.trunc() + Decimal::one()
        } else {
            self.trunc()
        }
    }

    /// Returns the maximum of the two numbers.
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let x = Decimal::new(1, 0);
    /// let y = Decimal::new(2, 0);
    /// assert_eq!(y, x.max(y));
    /// ```
    pub fn max(self, other: Decimal) -> Decimal {
        if self < other {
            return other;
        } else {
            self
        }
    }

    /// Returns the minimum of the two numbers.
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let x = Decimal::new(1, 0);
    /// let y = Decimal::new(2, 0);
    /// assert_eq!(x, x.min(y));
    /// ```
    pub fn min(self, other: Decimal) -> Decimal {
        if self > other {
            return other;
        } else {
            self
        }
    }

    /// Strips any trailing zero's from a `Decimal` and converts -0 to 0.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let number = Decimal::new(3100, 3);
    /// // note that it returns a decimal, without the extra scale
    /// assert_eq!(number.normalize().to_string(), "3.1");
    /// ```
    pub fn normalize(&self) -> Decimal {
        if self.is_zero() {
            // Convert -0, -0.0*, or 0.0* to 0.
            return Decimal::zero();
        }

        let mut scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        let mut result = [self.lo, self.mid, self.hi];
        let mut working = [self.lo, self.mid, self.hi];
        while scale > 0 {
            if div_by_u32(&mut working, 10) > 0 {
                break;
            }
            scale -= 1;
            result.copy_from_slice(&working);
        }
        Decimal {
            lo: result[0],
            mid: result[1],
            hi: result[2],
            flags: flags(self.is_sign_negative(), scale),
        }
    }

    /// Returns a new `Decimal` number with no fractional portion (i.e. an integer).
    /// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// // Demonstrating bankers rounding...
    /// let number_down = Decimal::new(65, 1);
    /// let number_up   = Decimal::new(75, 1);
    /// assert_eq!(number_down.round().to_string(), "6");
    /// assert_eq!(number_up.round().to_string(), "8");
    /// ```
    pub fn round(&self) -> Decimal {
        self.round_dp(0)
    }

    /// Returns a new `Decimal` number with the specified number of decimal points for fractional
    /// portion.
    /// Rounding is performed using the provided [`RoundingStrategy`]
    ///
    /// # Arguments
    /// * `dp`: the number of decimal points to round to.
    /// * `strategy`: the [`RoundingStrategy`] to use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::{Decimal, RoundingStrategy};
    /// use core::str::FromStr;
    ///
    /// let tax = Decimal::from_str("3.4395").unwrap();
    /// assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::RoundHalfUp).to_string(), "3.44");
    /// ```
    pub fn round_dp_with_strategy(&self, dp: u32, strategy: RoundingStrategy) -> Decimal {
        // Short circuit for zero
        if self.is_zero() {
            return Decimal {
                lo: 0,
                mid: 0,
                hi: 0,
                flags: flags(self.is_sign_negative(), dp),
            };
        }

        let old_scale = self.scale();

        // return early if decimal has a smaller number of fractional places than dp
        // e.g. 2.51 rounded to 3 decimal places is 2.51
        if old_scale <= dp {
            return *self;
        }

        let mut value = [self.lo, self.mid, self.hi];
        let mut value_scale = self.scale();
        let negative = self.is_sign_negative();

        value_scale -= dp;

        // Rescale to zero so it's easier to work with
        while value_scale > 0 {
            if value_scale < 10 {
                div_by_u32(&mut value, POWERS_10[value_scale as usize]);
                value_scale = 0;
            } else {
                div_by_u32(&mut value, POWERS_10[9]);
                value_scale -= 9;
            }
        }

        // Do some midpoint rounding checks
        // We're actually doing two things here.
        //  1. Figuring out midpoint rounding when we're right on the boundary. e.g. 2.50000
        //  2. Figuring out whether to add one or not e.g. 2.51
        // For this, we need to figure out the fractional portion that is additional to
        // the rounded number. e.g. for 0.12345 rounding to 2dp we'd want 345.
        // We're doing the equivalent of losing precision (e.g. to get 0.12)
        // then increasing the precision back up to 0.12000
        let mut offset = [self.lo, self.mid, self.hi];
        let mut diff = old_scale - dp;

        while diff > 0 {
            if diff < 10 {
                div_by_u32(&mut offset, POWERS_10[diff as usize]);
                break;
            } else {
                div_by_u32(&mut offset, POWERS_10[9]);
                // Only 9 as this array starts with 1
                diff -= 9;
            }
        }

        let mut diff = old_scale - dp;

        while diff > 0 {
            if diff < 10 {
                mul_by_u32(&mut offset, POWERS_10[diff as usize]);
                break;
            } else {
                mul_by_u32(&mut offset, POWERS_10[9]);
                // Only 9 as this array starts with 1
                diff -= 9;
            }
        }

        let mut decimal_portion = [self.lo, self.mid, self.hi];
        sub_internal(&mut decimal_portion, &offset);

        // If the decimal_portion is zero then we round based on the other data
        let mut cap = [5, 0, 0];
        for _ in 0..(old_scale - dp - 1) {
            mul_by_u32(&mut cap, 10);
        }
        let order = cmp_internal(&decimal_portion, &cap);

        match strategy {
            RoundingStrategy::BankersRounding => {
                match order {
                    Ordering::Equal => {
                        if (value[0] & 1) == 1 {
                            add_internal(&mut value, &ONE_INTERNAL_REPR);
                        }
                    }
                    Ordering::Greater => {
                        // Doesn't matter about the decimal portion
                        add_internal(&mut value, &ONE_INTERNAL_REPR);
                    }
                    _ => {}
                }
            }
            RoundingStrategy::RoundHalfDown => {
                if let Ordering::Greater = order {
                    add_internal(&mut value, &ONE_INTERNAL_REPR);
                }
            }
            RoundingStrategy::RoundHalfUp => {
                // when Ordering::Equal, decimal_portion is 0.5 exactly
                // when Ordering::Greater, decimal_portion is > 0.5
                match order {
                    Ordering::Equal => {
                        add_internal(&mut value, &ONE_INTERNAL_REPR);
                    }
                    Ordering::Greater => {
                        // Doesn't matter about the decimal portion
                        add_internal(&mut value, &ONE_INTERNAL_REPR);
                    }
                    _ => {}
                }
            }
            RoundingStrategy::RoundUp => {
                if !is_all_zero(&decimal_portion) {
                    add_internal(&mut value, &ONE_INTERNAL_REPR);
                }
            }
            RoundingStrategy::RoundDown => (),
        }

        Decimal {
            lo: value[0],
            mid: value[1],
            hi: value[2],
            flags: flags(negative, dp),
        }
    }

    /// Returns a new `Decimal` number with the specified number of decimal points for fractional portion.
    /// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
    ///
    /// # Arguments
    /// * `dp`: the number of decimal points to round to.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(pi.round_dp(2).to_string(), "3.14");
    /// ```
    pub fn round_dp(&self, dp: u32) -> Decimal {
        self.round_dp_with_strategy(dp, RoundingStrategy::BankersRounding)
    }

    /// Convert `Decimal` to an internal representation of the underlying struct. This is useful
    /// for debugging the internal state of the object.
    ///
    /// # Important Disclaimer
    /// This is primarily intended for library maintainers. The internal representation of a
    /// `Decimal` is considered "unstable" for public use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
    /// assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    ///     is_negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
    /// }");
    /// ```
    pub const fn unpack(&self) -> UnpackedDecimal {
        UnpackedDecimal {
            is_negative: self.is_sign_negative(),
            scale: self.scale(),
            hi: self.hi,
            lo: self.lo,
            mid: self.mid,
        }
    }

    /// Convert `Decimal` to an internal representation of the underlying struct. This is useful
    /// for debugging the internal state of the object.
    ///
    /// # Important Disclaimer
    /// This is primarily intended for library maintainers. The internal representation of a
    /// `Decimal` is considered "unstable" for public use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
    /// assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    ///     is_negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
    /// }");
    /// ```

    #[inline(always)]
    pub(crate) fn mantissa_array3(&self) -> [u32; 3] {
        [self.lo, self.mid, self.hi]
    }

    #[inline(always)]
    pub(crate) fn mantissa_array4(&self) -> [u32; 4] {
        [self.lo, self.mid, self.hi, 0]
    }

    fn base2_to_decimal(bits: &mut [u32; 3], exponent2: i32, positive: bool, is64: bool) -> Option<Self> {
        // 2^exponent2 = (10^exponent2)/(5^exponent2)
        //             = (5^-exponent2)*(10^exponent2)
        let mut exponent5 = -exponent2;
        let mut exponent10 = exponent2; // Ultimately, we want this for the scale

        while exponent5 > 0 {
            // Check to see if the mantissa is divisible by 2
            if bits[0] & 0x1 == 0 {
                exponent10 += 1;
                exponent5 -= 1;

                // We can divide by 2 without losing precision
                let hi_carry = bits[2] & 0x1 == 1;
                bits[2] >>= 1;
                let mid_carry = bits[1] & 0x1 == 1;
                bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
                bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
            } else {
                // The mantissa is NOT divisible by 2. Therefore the mantissa should
                // be multiplied by 5, unless the multiplication overflows.
                exponent5 -= 1;

                let mut temp = [bits[0], bits[1], bits[2]];
                if mul_by_u32(&mut temp, 5) == 0 {
                    // Multiplication succeeded without overflow, so copy result back
                    bits[0] = temp[0];
                    bits[1] = temp[1];
                    bits[2] = temp[2];
                } else {
                    // Multiplication by 5 overflows. The mantissa should be divided
                    // by 2, and therefore will lose significant digits.
                    exponent10 += 1;

                    // Shift right
                    let hi_carry = bits[2] & 0x1 == 1;
                    bits[2] >>= 1;
                    let mid_carry = bits[1] & 0x1 == 1;
                    bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
                    bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
                }
            }
        }

        // In order to divide the value by 5, it is best to multiply by 2/10.
        // Therefore, exponent10 is decremented, and the mantissa should be multiplied by 2
        while exponent5 < 0 {
            if bits[2] & SIGN_MASK == 0 {
                // No far left bit, the mantissa can withstand a shift-left without overflowing
                exponent10 -= 1;
                exponent5 += 1;
                shl_internal(bits, 1, 0);
            } else {
                // The mantissa would overflow if shifted. Therefore it should be
                // directly divided by 5. This will lose significant digits, unless
                // by chance the mantissa happens to be divisible by 5.
                exponent5 += 1;
                div_by_u32(bits, 5);
            }
        }

        // At this point, the mantissa has assimilated the exponent5, but
        // exponent10 might not be suitable for assignment. exponent10 must be
        // in the range [-MAX_PRECISION..0], so the mantissa must be scaled up or
        // down appropriately.
        while exponent10 > 0 {
            // In order to bring exponent10 down to 0, the mantissa should be
            // multiplied by 10 to compensate. If the exponent10 is too big, this
            // will cause the mantissa to overflow.
            if mul_by_u32(bits, 10) == 0 {
                exponent10 -= 1;
            } else {
                // Overflowed - return?
                return None;
            }
        }

        // In order to bring exponent up to -MAX_PRECISION, the mantissa should
        // be divided by 10 to compensate. If the exponent10 is too small, this
        // will cause the mantissa to underflow and become 0.
        while exponent10 < -(MAX_PRECISION as i32) {
            let rem10 = div_by_u32(bits, 10);
            exponent10 += 1;
            if is_all_zero(bits) {
                // Underflow, unable to keep dividing
                exponent10 = 0;
            } else if rem10 >= 5 {
                add_internal(bits, &ONE_INTERNAL_REPR);
            }
        }

        // This step is required in order to remove excess bits of precision from the
        // end of the bit representation, down to the precision guaranteed by the
        // floating point number
        if is64 {
            // Guaranteed to about 16 dp
            while exponent10 < 0 && (bits[2] != 0 || (bits[1] & 0xFFF0_0000) != 0) {
                let rem10 = div_by_u32(bits, 10);
                exponent10 += 1;
                if rem10 >= 5 {
                    add_internal(bits, &ONE_INTERNAL_REPR);
                }
            }
        } else {
            // Guaranteed to about 7 dp
            while exponent10 < 0
                && (bits[2] != 0 || bits[1] != 0 || (bits[2] == 0 && bits[1] == 0 && (bits[0] & 0xFF00_0000) != 0))
            {
                let rem10 = div_by_u32(bits, 10);
                exponent10 += 1;
                if rem10 >= 5 {
                    add_internal(bits, &ONE_INTERNAL_REPR);
                }
            }
        }

        // Remove multiples of 10 from the representation
        while exponent10 < 0 {
            let mut temp = [bits[0], bits[1], bits[2]];
            let remainder = div_by_u32(&mut temp, 10);
            if remainder == 0 {
                exponent10 += 1;
                bits[0] = temp[0];
                bits[1] = temp[1];
                bits[2] = temp[2];
            } else {
                break;
            }
        }

        Some(Decimal {
            lo: bits[0],
            mid: bits[1],
            hi: bits[2],
            flags: flags(!positive, -exponent10 as u32),
        })
    }

    /// Checked addition. Computes `self + other`, returning `None` if overflow occurred.
    #[inline(always)]
    pub fn checked_add(self, other: Decimal) -> Option<Decimal> {
        // Convert to the same scale
        let mut my = [self.lo, self.mid, self.hi];
        let mut my_scale = self.scale();
        let mut ot = [other.lo, other.mid, other.hi];
        let mut other_scale = other.scale();
        rescale_to_maximum_scale(&mut my, &mut my_scale, &mut ot, &mut other_scale);
        let mut final_scale = my_scale.max(other_scale);

        // Add the items together
        let my_negative = self.is_sign_negative();
        let other_negative = other.is_sign_negative();
        let mut negative = false;
        let carry;
        if !(my_negative ^ other_negative) {
            negative = my_negative;
            carry = add3_internal(&mut my, &ot);
        } else {
            let cmp = cmp_internal(&my, &ot);
            // -x + y
            // if x > y then it's negative (i.e. -2 + 1)
            match cmp {
                Ordering::Less => {
                    negative = other_negative;
                    sub3_internal(&mut ot, &my);
                    my[0] = ot[0];
                    my[1] = ot[1];
                    my[2] = ot[2];
                }
                Ordering::Greater => {
                    negative = my_negative;
                    sub3_internal(&mut my, &ot);
                }
                Ordering::Equal => {
                    // -2 + 2
                    my[0] = 0;
                    my[1] = 0;
                    my[2] = 0;
                }
            }
            carry = 0;
        }

        // If we have a carry we underflowed.
        // We need to lose some significant digits (if possible)
        if carry > 0 {
            if final_scale == 0 {
                return None;
            }

            // Copy it over to a temp array for modification
            let mut temp = [my[0], my[1], my[2], carry];
            while final_scale > 0 && temp[3] != 0 {
                div_by_u32(&mut temp, 10);
                final_scale -= 1;
            }

            // If we still have a carry bit then we overflowed
            if temp[3] > 0 {
                return None;
            }

            // Copy it back - we're done
            my[0] = temp[0];
            my[1] = temp[1];
            my[2] = temp[2];
        }
        Some(Decimal {
            lo: my[0],
            mid: my[1],
            hi: my[2],
            flags: flags(negative, final_scale),
        })
    }

    /// Checked subtraction. Computes `self - other`, returning `None` if overflow occurred.
    #[inline(always)]
    pub fn checked_sub(self, other: Decimal) -> Option<Decimal> {
        let negated_other = Decimal {
            lo: other.lo,
            mid: other.mid,
            hi: other.hi,
            flags: other.flags ^ SIGN_MASK,
        };
        self.checked_add(negated_other)
    }

    /// Checked multiplication. Computes `self * other`, returning `None` if overflow occurred.
    #[inline]
    pub fn checked_mul(self, other: Decimal) -> Option<Decimal> {
        // Early exit if either is zero
        if self.is_zero() || other.is_zero() {
            return Some(Decimal::zero());
        }

        // We are only resulting in a negative if we have mismatched signs
        let negative = self.is_sign_negative() ^ other.is_sign_negative();

        // We get the scale of the result by adding the operands. This may be too big, however
        //  we'll correct later
        let mut final_scale = self.scale() + other.scale();

        // First of all, if ONLY the lo parts of both numbers is filled
        // then we can simply do a standard 64 bit calculation. It's a minor
        // optimization however prevents the need for long form multiplication
        if self.mid == 0 && self.hi == 0 && other.mid == 0 && other.hi == 0 {
            // Simply multiplication
            let mut u64_result = u64_to_array(u64::from(self.lo) * u64::from(other.lo));

            // If we're above max precision then this is a very small number
            if final_scale > MAX_PRECISION {
                final_scale -= MAX_PRECISION;

                // If the number is above 19 then this will equate to zero.
                // This is because the max value in 64 bits is 1.84E19
                if final_scale > 19 {
                    return Some(Decimal::zero());
                }

                let mut rem_lo = 0;
                let mut power;
                if final_scale > 9 {
                    // Since 10^10 doesn't fit into u32, we divide by 10^10/4
                    // and multiply the next divisor by 4.
                    rem_lo = div_by_u32(&mut u64_result, 2_500_000_000);
                    power = POWERS_10[final_scale as usize - 10] << 2;
                } else {
                    power = POWERS_10[final_scale as usize];
                }

                // Divide fits in 32 bits
                let rem_hi = div_by_u32(&mut u64_result, power);

                // Round the result. Since the divisor is a power of 10
                // we check to see if the remainder is >= 1/2 divisor
                power >>= 1;
                if rem_hi >= power && (rem_hi > power || (rem_lo | (u64_result[0] & 0x1)) != 0) {
                    u64_result[0] += 1;
                }

                final_scale = MAX_PRECISION;
            }
            return Some(Decimal {
                lo: u64_result[0],
                mid: u64_result[1],
                hi: 0,
                flags: flags(negative, final_scale),
            });
        }

        // We're using some of the high bits, so we essentially perform
        // long form multiplication. We compute the 9 partial products
        // into a 192 bit result array.
        //
        //                     [my-h][my-m][my-l]
        //                  x  [ot-h][ot-m][ot-l]
        // --------------------------------------
        // 1.                        [r-hi][r-lo] my-l * ot-l [0, 0]
        // 2.                  [r-hi][r-lo]       my-l * ot-m [0, 1]
        // 3.                  [r-hi][r-lo]       my-m * ot-l [1, 0]
        // 4.            [r-hi][r-lo]             my-m * ot-m [1, 1]
        // 5.            [r-hi][r-lo]             my-l * ot-h [0, 2]
        // 6.            [r-hi][r-lo]             my-h * ot-l [2, 0]
        // 7.      [r-hi][r-lo]                   my-m * ot-h [1, 2]
        // 8.      [r-hi][r-lo]                   my-h * ot-m [2, 1]
        // 9.[r-hi][r-lo]                         my-h * ot-h [2, 2]
        let my = [self.lo, self.mid, self.hi];
        let ot = [other.lo, other.mid, other.hi];
        let mut product = [0u32, 0u32, 0u32, 0u32, 0u32, 0u32];

        // We can perform a minor short circuit here. If the
        // high portions are both 0 then we can skip portions 5-9
        let to = if my[2] == 0 && ot[2] == 0 { 2 } else { 3 };

        for my_index in 0..to {
            for ot_index in 0..to {
                let (mut rlo, mut rhi) = mul_part(my[my_index], ot[ot_index], 0);

                // Get the index for the lo portion of the product
                for prod in product.iter_mut().skip(my_index + ot_index) {
                    let (res, overflow) = add_part(rlo, *prod);
                    *prod = res;

                    // If we have something in rhi from before then promote that
                    if rhi > 0 {
                        // If we overflowed in the last add, add that with rhi
                        if overflow > 0 {
                            let (nlo, nhi) = add_part(rhi, overflow);
                            rlo = nlo;
                            rhi = nhi;
                        } else {
                            rlo = rhi;
                            rhi = 0;
                        }
                    } else if overflow > 0 {
                        rlo = overflow;
                        rhi = 0;
                    } else {
                        break;
                    }

                    // If nothing to do next round then break out
                    if rlo == 0 {
                        break;
                    }
                }
            }
        }

        // If our result has used up the high portion of the product
        // then we either have an overflow or an underflow situation
        // Overflow will occur if we can't scale it back, whereas underflow
        // with kick in rounding
        let mut remainder = 0;
        while final_scale > 0 && (product[3] != 0 || product[4] != 0 || product[5] != 0) {
            remainder = div_by_u32(&mut product, 10u32);
            final_scale -= 1;
        }

        // Round up the carry if we need to
        if remainder >= 5 {
            for part in product.iter_mut() {
                if remainder == 0 {
                    break;
                }
                let digit: u64 = u64::from(*part) + 1;
                remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                *part = (digit & 0xFFFF_FFFF) as u32;
            }
        }

        // If we're still above max precision then we'll try again to
        // reduce precision - we may be dealing with a limit of "0"
        if final_scale > MAX_PRECISION {
            // We're in an underflow situation
            // The easiest way to remove precision is to divide off the result
            while final_scale > MAX_PRECISION && !is_all_zero(&product) {
                div_by_u32(&mut product, 10);
                final_scale -= 1;
            }
            // If we're still at limit then we can't represent any
            // siginificant decimal digits and will return an integer only
            // Can also be invoked while representing 0.
            if final_scale > MAX_PRECISION {
                final_scale = 0;
            }
        } else if !(product[3] == 0 && product[4] == 0 && product[5] == 0) {
            // We're in an overflow situation - we're within our precision bounds
            // but still have bits in overflow
            return None;
        }

        Some(Decimal {
            lo: product[0],
            mid: product[1],
            hi: product[2],
            flags: flags(negative, final_scale),
        })
    }

    /// Checked division. Computes `self / other`, returning `None` if `other == 0.0` or the
    /// division results in overflow.
    pub fn checked_div(self, other: Decimal) -> Option<Decimal> {
        match self.div_impl(other) {
            DivResult::Ok(quot) => Some(quot),
            DivResult::Overflow => None,
            DivResult::DivByZero => None,
        }
    }

    fn div_impl(self, other: Decimal) -> DivResult {
        if other.is_zero() {
            return DivResult::DivByZero;
        }
        if self.is_zero() {
            return DivResult::Ok(Decimal::zero());
        }

        let dividend = [self.lo, self.mid, self.hi];
        let divisor = [other.lo, other.mid, other.hi];
        let mut quotient = [0u32, 0u32, 0u32];
        let mut quotient_scale: i32 = self.scale() as i32 - other.scale() as i32;

        // We supply an extra overflow word for each of the dividend and the remainder
        let mut working_quotient = [dividend[0], dividend[1], dividend[2], 0u32];
        let mut working_remainder = [0u32, 0u32, 0u32, 0u32];
        let mut working_scale = quotient_scale;
        let mut remainder_scale = quotient_scale;
        let mut underflow;

        loop {
            div_internal(&mut working_quotient, &mut working_remainder, &divisor);
            underflow = add_with_scale_internal(
                &mut quotient,
                &mut quotient_scale,
                &mut working_quotient,
                &mut working_scale,
            );

            // Multiply the remainder by 10
            let mut overflow = 0;
            for part in working_remainder.iter_mut() {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            // Copy temp remainder into the temp quotient section
            working_quotient.copy_from_slice(&working_remainder);

            remainder_scale += 1;
            working_scale = remainder_scale;

            if underflow || is_all_zero(&working_remainder) {
                break;
            }
        }

        // If we have a really big number try to adjust the scale to 0
        while quotient_scale < 0 {
            copy_array_diff_lengths(&mut working_quotient, &quotient);
            working_quotient[3] = 0;
            working_remainder.iter_mut().for_each(|x| *x = 0);

            // Mul 10
            let mut overflow = 0;
            for part in &mut working_quotient {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            for part in &mut working_remainder {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            if working_quotient[3] == 0 && is_all_zero(&working_remainder) {
                quotient_scale += 1;
                quotient[0] = working_quotient[0];
                quotient[1] = working_quotient[1];
                quotient[2] = working_quotient[2];
            } else {
                // Overflow
                return DivResult::Overflow;
            }
        }

        if quotient_scale > 255 {
            quotient[0] = 0;
            quotient[1] = 0;
            quotient[2] = 0;
            quotient_scale = 0;
        }

        let mut quotient_negative = self.is_sign_negative() ^ other.is_sign_negative();

        // Check for underflow
        let mut final_scale: u32 = quotient_scale as u32;
        if final_scale > MAX_PRECISION {
            let mut remainder = 0;

            // Division underflowed. We must remove some significant digits over using
            //  an invalid scale.
            while final_scale > MAX_PRECISION && !is_all_zero(&quotient) {
                remainder = div_by_u32(&mut quotient, 10);
                final_scale -= 1;
            }
            if final_scale > MAX_PRECISION {
                // Result underflowed so set to zero
                final_scale = 0;
                quotient_negative = false;
            } else if remainder >= 5 {
                for part in &mut quotient {
                    if remainder == 0 {
                        break;
                    }
                    let digit: u64 = u64::from(*part) + 1;
                    remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                    *part = (digit & 0xFFFF_FFFF) as u32;
                }
            }
        }

        DivResult::Ok(Decimal {
            lo: quotient[0],
            mid: quotient[1],
            hi: quotient[2],
            flags: flags(quotient_negative, final_scale),
        })
    }

    /// Checked remainder. Computes `self % other`, returning `None` if `other == 0.0`.
    pub fn checked_rem(self, other: Decimal) -> Option<Decimal> {
        if other.is_zero() {
            return None;
        }
        if self.is_zero() {
            return Some(Decimal::zero());
        }

        // Rescale so comparable
        let initial_scale = self.scale();
        let mut quotient = [self.lo, self.mid, self.hi];
        let mut quotient_scale = initial_scale;
        let mut divisor = [other.lo, other.mid, other.hi];
        let mut divisor_scale = other.scale();
        rescale_to_maximum_scale(&mut quotient, &mut quotient_scale, &mut divisor, &mut divisor_scale);

        // Working is the remainder + the quotient
        // We use an aligned array since we'll be using it a lot.
        let mut working_quotient = [quotient[0], quotient[1], quotient[2], 0u32];
        let mut working_remainder = [0u32, 0u32, 0u32, 0u32];
        div_internal(&mut working_quotient, &mut working_remainder, &divisor);

        // Round if necessary. This is for semantic correctness, but could feasibly be removed for
        // performance improvements.
        if quotient_scale > initial_scale {
            let mut working = [
                working_remainder[0],
                working_remainder[1],
                working_remainder[2],
                working_remainder[3],
            ];
            while quotient_scale > initial_scale {
                if div_by_u32(&mut working, 10) > 0 {
                    break;
                }
                quotient_scale -= 1;
                working_remainder.copy_from_slice(&working);
            }
        }

        Some(Decimal {
            lo: working_remainder[0],
            mid: working_remainder[1],
            hi: working_remainder[2],
            flags: flags(self.is_sign_negative(), quotient_scale),
        })
    }
}

impl Default for Decimal {
    fn default() -> Self {
        Self::zero()
    }
}

enum DivResult {
    Ok(Decimal),
    Overflow,
    DivByZero,
}

#[inline]
const fn flags(neg: bool, scale: u32) -> u32 {
    (scale << SCALE_SHIFT) | ((neg as u32) << SIGN_SHIFT)
}

/// Rescales the given decimals to equivalent scales.
/// It will firstly try to scale both the left and the right side to
/// the maximum scale of left/right. If it is unable to do that it
/// will try to reduce the accuracy of the other argument.
/// e.g. with 1.23 and 2.345 it'll rescale the first arg to 1.230
#[inline(always)]
fn rescale_to_maximum_scale(left: &mut [u32; 3], left_scale: &mut u32, right: &mut [u32; 3], right_scale: &mut u32) {
    if left_scale == right_scale {
        // Nothing to do
        return;
    }

    if is_all_zero(left) {
        *left_scale = *right_scale;
        return;
    } else if is_all_zero(right) {
        *right_scale = *left_scale;
        return;
    }

    if left_scale > right_scale {
        rescale_internal(right, right_scale, *left_scale);
        if right_scale != left_scale {
            rescale_internal(left, left_scale, *right_scale);
        }
    } else {
        rescale_internal(left, left_scale, *right_scale);
        if right_scale != left_scale {
            rescale_internal(right, right_scale, *left_scale);
        }
    }
}

/// Rescales the given decimal to new scale.
/// e.g. with 1.23 and new scale 3 rescale the value to 1.230
#[inline(always)]
fn rescale_internal(value: &mut [u32; 3], value_scale: &mut u32, new_scale: u32) {
    if *value_scale == new_scale {
        // Nothing to do
        return;
    }

    if is_all_zero(value) {
        *value_scale = new_scale;
        return;
    }

    if *value_scale > new_scale {
        let mut diff = *value_scale - new_scale;
        // Scaling further isn't possible since we got an overflow
        // In this case we need to reduce the accuracy of the "side to keep"

        // Now do the necessary rounding
        let mut remainder = 0;
        while diff > 0 {
            if is_all_zero(value) {
                *value_scale = new_scale;
                return;
            }

            diff -= 1;

            // Any remainder is discarded if diff > 0 still (i.e. lost precision)
            remainder = div_by_10(value);
        }
        if remainder >= 5 {
            for part in value.iter_mut() {
                let digit = u64::from(*part) + 1u64;
                remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                *part = (digit & 0xFFFF_FFFF) as u32;
                if remainder == 0 {
                    break;
                }
            }
        }
        *value_scale = new_scale;
    } else {
        let mut diff = new_scale - *value_scale;
        let mut working = [value[0], value[1], value[2]];
        while diff > 0 && mul_by_10(&mut working) == 0 {
            value.copy_from_slice(&working);
            diff -= 1;
        }
        *value_scale = new_scale - diff;
    }
}

// This method should only be used where copy from slice cannot be
#[inline]
fn copy_array_diff_lengths(into: &mut [u32], from: &[u32]) {
    for i in 0..into.len() {
        if i >= from.len() {
            break;
        }
        into[i] = from[i];
    }
}

#[inline]
fn u64_to_array(value: u64) -> [u32; 2] {
    [(value & U32_MASK) as u32, (value >> 32 & U32_MASK) as u32]
}

fn add_internal(value: &mut [u32], by: &[u32]) -> u32 {
    let mut carry: u64 = 0;
    let vl = value.len();
    let bl = by.len();
    if vl >= bl {
        let mut sum: u64;
        for i in 0..bl {
            sum = u64::from(value[i]) + u64::from(by[i]) + carry;
            value[i] = (sum & U32_MASK) as u32;
            carry = sum >> 32;
        }
        if vl > bl && carry > 0 {
            for i in value.iter_mut().skip(bl) {
                sum = u64::from(*i) + carry;
                *i = (sum & U32_MASK) as u32;
                carry = sum >> 32;
                if carry == 0 {
                    break;
                }
            }
        }
    } else if vl + 1 == bl {
        // Overflow, by default, is anything in the high portion of by
        let mut sum: u64;
        for i in 0..vl {
            sum = u64::from(value[i]) + u64::from(by[i]) + carry;
            value[i] = (sum & U32_MASK) as u32;
            carry = sum >> 32;
        }
        if by[vl] > 0 {
            carry += u64::from(by[vl]);
        }
    } else {
        panic!("Internal error: add using incompatible length arrays. {} <- {}", vl, bl);
    }
    carry as u32
}

#[inline]
fn add3_internal(value: &mut [u32; 3], by: &[u32; 3]) -> u32 {
    let mut carry: u32 = 0;
    let bl = by.len();
    for i in 0..bl {
        let res1 = value[i].overflowing_add(by[i]);
        let res2 = res1.0.overflowing_add(carry);
        value[i] = res2.0;
        carry = (res1.1 | res2.1) as u32;
    }
    carry
}

fn add_with_scale_internal(
    quotient: &mut [u32; 3],
    quotient_scale: &mut i32,
    working_quotient: &mut [u32; 4],
    working_scale: &mut i32,
) -> bool {
    // Add quotient and the working (i.e. quotient = quotient + working)
    if is_all_zero(quotient) {
        // Quotient is zero so we can just copy the working quotient in directly
        // First, make sure they are both 96 bit.
        while working_quotient[3] != 0 {
            div_by_u32(working_quotient, 10);
            *working_scale -= 1;
        }
        copy_array_diff_lengths(quotient, working_quotient);
        *quotient_scale = *working_scale;
        return false;
    }

    if is_all_zero(working_quotient) {
        return false;
    }

    // We have ensured that our working is not zero so we should do the addition

    // If our two quotients are different then
    // try to scale down the one with the bigger scale
    let mut temp3 = [0u32, 0u32, 0u32];
    let mut temp4 = [0u32, 0u32, 0u32, 0u32];
    if *quotient_scale != *working_scale {
        // TODO: Remove necessity for temp (without performance impact)
        fn div_by_10(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
            // Copy to the temp array
            temp.copy_from_slice(target);
            // divide by 10 until target scale is reached
            while *scale > target_scale {
                let remainder = div_by_u32(temp, 10);
                if remainder == 0 {
                    *scale -= 1;
                    target.copy_from_slice(&temp);
                } else {
                    break;
                }
            }
        }

        if *quotient_scale < *working_scale {
            div_by_10(working_quotient, &mut temp4, working_scale, *quotient_scale);
        } else {
            div_by_10(quotient, &mut temp3, quotient_scale, *working_scale);
        }
    }

    // If our two quotients are still different then
    // try to scale up the smaller scale
    if *quotient_scale != *working_scale {
        // TODO: Remove necessity for temp (without performance impact)
        fn mul_by_10(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
            temp.copy_from_slice(target);
            let mut overflow = 0;
            // Multiply by 10 until target scale reached or overflow
            while *scale < target_scale && overflow == 0 {
                overflow = mul_by_u32(temp, 10);
                if overflow == 0 {
                    // Still no overflow
                    *scale += 1;
                    target.copy_from_slice(&temp);
                }
            }
        }

        if *quotient_scale > *working_scale {
            mul_by_10(working_quotient, &mut temp4, working_scale, *quotient_scale);
        } else {
            mul_by_10(quotient, &mut temp3, quotient_scale, *working_scale);
        }
    }

    // If our two quotients are still different then
    // try to scale down the one with the bigger scale
    // (ultimately losing significant digits)
    if *quotient_scale != *working_scale {
        // TODO: Remove necessity for temp (without performance impact)
        fn div_by_10_lossy(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
            temp.copy_from_slice(target);
            // divide by 10 until target scale is reached
            while *scale > target_scale {
                div_by_u32(temp, 10);
                *scale -= 1;
                target.copy_from_slice(&temp);
            }
        }
        if *quotient_scale < *working_scale {
            div_by_10_lossy(working_quotient, &mut temp4, working_scale, *quotient_scale);
        } else {
            div_by_10_lossy(quotient, &mut temp3, quotient_scale, *working_scale);
        }
    }

    // If quotient or working are zero we have an underflow condition
    if is_all_zero(quotient) || is_all_zero(working_quotient) {
        // Underflow
        return true;
    } else {
        // Both numbers have the same scale and can be added.
        // We just need to know whether we can fit them in
        let mut underflow = false;
        let mut temp = [0u32, 0u32, 0u32];
        while !underflow {
            temp.copy_from_slice(quotient);

            // Add the working quotient
            let overflow = add_internal(&mut temp, working_quotient);
            if overflow == 0 {
                // addition was successful
                quotient.copy_from_slice(&temp);
                break;
            } else {
                // addition overflowed - remove significant digits and try again
                div_by_u32(quotient, 10);
                *quotient_scale -= 1;
                div_by_u32(working_quotient, 10);
                *working_scale -= 1;
                // Check for underflow
                underflow = is_all_zero(quotient) || is_all_zero(working_quotient);
            }
        }
        if underflow {
            return true;
        }
    }
    false
}

#[inline]
fn add_part(left: u32, right: u32) -> (u32, u32) {
    let added = u64::from(left) + u64::from(right);
    ((added & U32_MASK) as u32, (added >> 32 & U32_MASK) as u32)
}

#[inline(always)]
fn sub3_internal(value: &mut [u32; 3], by: &[u32; 3]) {
    let mut overflow = 0;
    let vl = value.len();
    for i in 0..vl {
        let part = (0x1_0000_0000u64 + u64::from(value[i])) - (u64::from(by[i]) + overflow);
        value[i] = part as u32;
        overflow = 1 - (part >> 32);
    }
}

fn sub_internal(value: &mut [u32], by: &[u32]) -> u32 {
    // The way this works is similar to long subtraction
    // Let's assume we're working with bytes for simpliciy in an example:
    //   257 - 8 = 249
    //   0000_0001 0000_0001 - 0000_0000 0000_1000 = 0000_0000 1111_1001
    // We start by doing the first byte...
    //   Overflow = 0
    //   Left = 0000_0001 (1)
    //   Right = 0000_1000 (8)
    // Firstly, we make sure the left and right are scaled up to twice the size
    //   Left = 0000_0000 0000_0001
    //   Right = 0000_0000 0000_1000
    // We then subtract right from left
    //   Result = Left - Right = 1111_1111 1111_1001
    // We subtract the overflow, which in this case is 0.
    // Because left < right (1 < 8) we invert the high part.
    //   Lo = 1111_1001
    //   Hi = 1111_1111 -> 0000_0001
    // Lo is the field, hi is the overflow.
    // We do the same for the second byte...
    //   Overflow = 1
    //   Left = 0000_0001
    //   Right = 0000_0000
    //   Result = Left - Right = 0000_0000 0000_0001
    // We subtract the overflow...
    //   Result = 0000_0000 0000_0001 - 1 = 0
    // And we invert the high, just because (invert 0 = 0).
    // So our result is:
    //   0000_0000 1111_1001
    let mut overflow = 0;
    let vl = value.len();
    let bl = by.len();
    for i in 0..vl {
        if i >= bl {
            break;
        }
        let (lo, hi) = sub_part(value[i], by[i], overflow);
        value[i] = lo;
        overflow = hi;
    }
    overflow
}

fn sub_part(left: u32, right: u32, overflow: u32) -> (u32, u32) {
    let part = 0x1_0000_0000u64 + u64::from(left) - (u64::from(right) + u64::from(overflow));
    let lo = part as u32;
    let hi = 1 - ((part >> 32) as u32);
    (lo, hi)
}

// Returns overflow
#[inline]
fn mul_by_10(bits: &mut [u32; 3]) -> u32 {
    let mut overflow = 0u64;
    for b in bits.iter_mut() {
        let result = u64::from(*b) * 10u64 + overflow;
        let hi = (result >> 32) & U32_MASK;
        let lo = (result & U32_MASK) as u32;
        *b = lo;
        overflow = hi;
    }

    overflow as u32
}

// Returns overflow
pub(crate) fn mul_by_u32(bits: &mut [u32], m: u32) -> u32 {
    let mut overflow = 0;
    for b in bits.iter_mut() {
        let (lo, hi) = mul_part(*b, m, overflow);
        *b = lo;
        overflow = hi;
    }
    overflow
}

fn mul_part(left: u32, right: u32, high: u32) -> (u32, u32) {
    let result = u64::from(left) * u64::from(right) + u64::from(high);
    let hi = ((result >> 32) & U32_MASK) as u32;
    let lo = (result & U32_MASK) as u32;
    (lo, hi)
}

fn div_internal(quotient: &mut [u32; 4], remainder: &mut [u32; 4], divisor: &[u32; 3]) {
    // There are a couple of ways to do division on binary numbers:
    //   1. Using long division
    //   2. Using the complement method
    // ref: http://paulmason.me/dividing-binary-numbers-part-2/
    // The complement method basically keeps trying to subtract the
    // divisor until it can't anymore and placing the rest in remainder.
    let mut complement = [
        divisor[0] ^ 0xFFFF_FFFF,
        divisor[1] ^ 0xFFFF_FFFF,
        divisor[2] ^ 0xFFFF_FFFF,
        0xFFFF_FFFF,
    ];

    // Add one onto the complement
    add_internal(&mut complement, &[1u32]);

    // Make sure the remainder is 0
    remainder.iter_mut().for_each(|x| *x = 0);

    // If we have nothing in our hi+ block then shift over till we do
    let mut blocks_to_process = 0;
    while blocks_to_process < 4 && quotient[3] == 0 {
        // Shift whole blocks to the "left"
        shl_internal(quotient, 32, 0);

        // Incremember the counter
        blocks_to_process += 1;
    }

    // Let's try and do the addition...
    let mut block = blocks_to_process << 5;
    let mut working = [0u32, 0u32, 0u32, 0u32];
    while block < 128 {
        // << 1 for quotient AND remainder
        let carry = shl_internal(quotient, 1, 0);
        shl_internal(remainder, 1, carry);

        // Copy the remainder of working into sub
        working.copy_from_slice(remainder);

        // Add the remainder with the complement
        add_internal(&mut working, &complement);

        // Check for the significant bit - move over to the quotient
        // as necessary
        if (working[3] & 0x8000_0000) == 0 {
            remainder.copy_from_slice(&working);
            quotient[0] |= 1;
        }

        // Increment our pointer
        block += 1;
    }
}

// Returns remainder
pub(crate) fn div_by_u32(bits: &mut [u32], divisor: u32) -> u32 {
    if divisor == 0 {
        // Divide by zero
        panic!("Internal error: divide by zero");
    } else if divisor == 1 {
        // dividend remains unchanged
        0
    } else {
        let mut remainder = 0u32;
        let divisor = u64::from(divisor);
        for part in bits.iter_mut().rev() {
            let temp = (u64::from(remainder) << 32) + u64::from(*part);
            remainder = (temp % divisor) as u32;
            *part = (temp / divisor) as u32;
        }

        remainder
    }
}

fn div_by_10(bits: &mut [u32; 3]) -> u32 {
    let mut remainder = 0u32;
    let divisor = 10u64;
    for part in bits.iter_mut().rev() {
        let temp = (u64::from(remainder) << 32) + u64::from(*part);
        remainder = (temp % divisor) as u32;
        *part = (temp / divisor) as u32;
    }

    remainder
}

#[inline]
fn shl_internal(bits: &mut [u32], shift: u32, carry: u32) -> u32 {
    let mut shift = shift;

    // Whole blocks first
    while shift >= 32 {
        // memcpy would be useful here
        for i in (1..bits.len()).rev() {
            bits[i] = bits[i - 1];
        }
        bits[0] = 0;
        shift -= 32;
    }

    // Continue with the rest
    if shift > 0 {
        let mut carry = carry;
        for part in bits.iter_mut() {
            let b = *part >> (32 - shift);
            *part = (*part << shift) | carry;
            carry = b;
        }
        carry
    } else {
        0
    }
}

#[inline]
fn cmp_internal(left: &[u32; 3], right: &[u32; 3]) -> Ordering {
    let left_hi: u32 = left[2];
    let right_hi: u32 = right[2];
    let left_lo: u64 = u64::from(left[1]) << 32 | u64::from(left[0]);
    let right_lo: u64 = u64::from(right[1]) << 32 | u64::from(right[0]);
    if left_hi < right_hi || (left_hi <= right_hi && left_lo < right_lo) {
        Ordering::Less
    } else if left_hi == right_hi && left_lo == right_lo {
        Ordering::Equal
    } else {
        Ordering::Greater
    }
}

#[inline]
pub(crate) fn is_all_zero(bits: &[u32]) -> bool {
    bits.iter().all(|b| *b == 0)
}

macro_rules! impl_from {
    ($T:ty, $from_ty:path) => {
        impl From<$T> for Decimal {
            #[inline]
            fn from(t: $T) -> Decimal {
                $from_ty(t).unwrap()
            }
        }
    };
}

impl_from!(isize, FromPrimitive::from_isize);
impl_from!(i8, FromPrimitive::from_i8);
impl_from!(i16, FromPrimitive::from_i16);
impl_from!(i32, FromPrimitive::from_i32);
impl_from!(i64, FromPrimitive::from_i64);
impl_from!(usize, FromPrimitive::from_usize);
impl_from!(u8, FromPrimitive::from_u8);
impl_from!(u16, FromPrimitive::from_u16);
impl_from!(u32, FromPrimitive::from_u32);
impl_from!(u64, FromPrimitive::from_u64);

macro_rules! forward_val_val_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl $imp<$res> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $res) -> $res {
                (&self).$method(&other)
            }
        }
    };
}

macro_rules! forward_ref_val_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl<'a> $imp<$res> for &'a $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $res) -> $res {
                self.$method(&other)
            }
        }
    };
}

macro_rules! forward_val_ref_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl<'a> $imp<&'a $res> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: &$res) -> $res {
                (&self).$method(other)
            }
        }
    };
}

macro_rules! forward_all_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        forward_val_val_binop!(impl $imp for $res, $method);
        forward_ref_val_binop!(impl $imp for $res, $method);
        forward_val_ref_binop!(impl $imp for $res, $method);
    };
}

impl Zero for Decimal {
    fn zero() -> Decimal {
        Decimal {
            flags: 0,
            hi: 0,
            lo: 0,
            mid: 0,
        }
    }

    fn is_zero(&self) -> bool {
        self.lo.is_zero() && self.mid.is_zero() && self.hi.is_zero()
    }
}

impl One for Decimal {
    fn one() -> Decimal {
        Decimal {
            flags: 0,
            hi: 0,
            lo: 1,
            mid: 0,
        }
    }
}

impl Signed for Decimal {
    fn abs(&self) -> Self {
        self.abs()
    }

    fn abs_sub(&self, other: &Self) -> Self {
        if self <= other {
            Decimal::zero()
        } else {
            self.abs()
        }
    }

    fn signum(&self) -> Self {
        if self.is_zero() {
            Decimal::zero()
        } else {
            let mut value = Decimal::one();
            if self.is_sign_negative() {
                value.set_sign_negative(true);
            }
            value
        }
    }

    fn is_positive(&self) -> bool {
        self.is_sign_positive()
    }

    fn is_negative(&self) -> bool {
        self.is_sign_negative()
    }
}

impl Num for Decimal {
    type FromStrRadixErr = Error;

    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        if str.is_empty() {
            return Err(Error::new("Invalid decimal: empty"));
        }
        if radix < 2 {
            return Err(Error::new("Unsupported radix < 2"));
        }
        if radix > 36 {
            // As per trait documentation
            return Err(Error::new("Unsupported radix > 36"));
        }

        let mut offset = 0;
        let mut len = str.len();
        let bytes: Vec<u8> = str.bytes().collect();
        let mut negative = false; // assume positive

        // handle the sign
        if bytes[offset] == b'-' {
            negative = true; // leading minus means negative
            offset += 1;
            len -= 1;
        } else if bytes[offset] == b'+' {
            // leading + allowed
            offset += 1;
            len -= 1;
        }

        // should now be at numeric part of the significand
        let mut digits_before_dot: i32 = -1; // digits before '.', -1 if no '.'
        let mut coeff = Vec::new(); // integer significand array

        // Supporting different radix
        let (max_n, max_alpha_lower, max_alpha_upper) = if radix <= 10 {
            (b'0' + (radix - 1) as u8, 0, 0)
        } else {
            let adj = (radix - 11) as u8;
            (b'9', adj + b'a', adj + b'A')
        };

        // Estimate the max precision. All in all, it needs to fit into 96 bits.
        // Rather than try to estimate, I've included the constants directly in here. We could,
        // perhaps, replace this with a formula if it's faster - though it does appear to be log2.
        let estimated_max_precision = match radix {
            2 => 96,
            3 => 61,
            4 => 48,
            5 => 42,
            6 => 38,
            7 => 35,
            8 => 32,
            9 => 31,
            10 => 29,
            11 => 28,
            12 => 27,
            13 => 26,
            14 => 26,
            15 => 25,
            16 => 24,
            17 => 24,
            18 => 24,
            19 => 23,
            20 => 23,
            21 => 22,
            22 => 22,
            23 => 22,
            24 => 21,
            25 => 21,
            26 => 21,
            27 => 21,
            28 => 20,
            29 => 20,
            30 => 20,
            31 => 20,
            32 => 20,
            33 => 20,
            34 => 19,
            35 => 19,
            36 => 19,
            _ => return Err(Error::new("Unsupported radix")),
        };

        let mut maybe_round = false;
        while len > 0 {
            let b = bytes[offset];
            match b {
                b'0'..=b'9' => {
                    if b > max_n {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    coeff.push(u32::from(b - b'0'));
                    offset += 1;
                    len -= 1;

                    // If the coefficient is longer than the max, exit early
                    if coeff.len() as u32 > estimated_max_precision {
                        maybe_round = true;
                        break;
                    }
                }
                b'a'..=b'z' => {
                    if b > max_alpha_lower {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    coeff.push(u32::from(b - b'a') + 10);
                    offset += 1;
                    len -= 1;

                    if coeff.len() as u32 > estimated_max_precision {
                        maybe_round = true;
                        break;
                    }
                }
                b'A'..=b'Z' => {
                    if b > max_alpha_upper {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    coeff.push(u32::from(b - b'A') + 10);
                    offset += 1;
                    len -= 1;

                    if coeff.len() as u32 > estimated_max_precision {
                        maybe_round = true;
                        break;
                    }
                }
                b'.' => {
                    if digits_before_dot >= 0 {
                        return Err(Error::new("Invalid decimal: two decimal points"));
                    }
                    digits_before_dot = coeff.len() as i32;
                    offset += 1;
                    len -= 1;
                }
                b'_' => {
                    // Must start with a number...
                    if coeff.is_empty() {
                        return Err(Error::new("Invalid decimal: must start lead with a number"));
                    }
                    offset += 1;
                    len -= 1;
                }
                _ => return Err(Error::new("Invalid decimal: unknown character")),
            }
        }

        // If we exited before the end of the string then do some rounding if necessary
        if maybe_round && offset < bytes.len() {
            let next_byte = bytes[offset];
            let digit = match next_byte {
                b'0'..=b'9' => {
                    if next_byte > max_n {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    u32::from(next_byte - b'0')
                }
                b'a'..=b'z' => {
                    if next_byte > max_alpha_lower {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    u32::from(next_byte - b'a') + 10
                }
                b'A'..=b'Z' => {
                    if next_byte > max_alpha_upper {
                        return Err(Error::new("Invalid decimal: invalid character"));
                    }
                    u32::from(next_byte - b'A') + 10
                }
                b'_' => 0,
                b'.' => {
                    // Still an error if we have a second dp
                    if digits_before_dot >= 0 {
                        return Err(Error::new("Invalid decimal: two decimal points"));
                    }
                    0
                }
                _ => return Err(Error::new("Invalid decimal: unknown character")),
            };

            // Round at midpoint
            let midpoint = if radix & 0x1 == 1 { radix / 2 } else { radix + 1 / 2 };
            if digit >= midpoint {
                let mut index = coeff.len() - 1;
                loop {
                    let new_digit = coeff[index] + 1;
                    if new_digit <= 9 {
                        coeff[index] = new_digit;
                        break;
                    } else {
                        coeff[index] = 0;
                        if index == 0 {
                            coeff.insert(0, 1u32);
                            digits_before_dot += 1;
                            coeff.pop();
                            break;
                        }
                    }
                    index -= 1;
                }
            }
        }

        // here when no characters left
        if coeff.is_empty() {
            return Err(Error::new("Invalid decimal: no digits found"));
        }

        let mut scale = if digits_before_dot >= 0 {
            // we had a decimal place so set the scale
            (coeff.len() as u32) - (digits_before_dot as u32)
        } else {
            0
        };

        // Parse this using specified radix
        let mut data = [0u32, 0u32, 0u32];
        let mut tmp = [0u32, 0u32, 0u32];
        let len = coeff.len();
        for (i, digit) in coeff.iter().enumerate() {
            // If the data is going to overflow then we should go into recovery mode
            tmp[0] = data[0];
            tmp[1] = data[1];
            tmp[2] = data[2];
            let overflow = mul_by_u32(&mut tmp, radix);
            if overflow > 0 {
                // This means that we have more data to process, that we're not sure what to do with.
                // This may or may not be an issue - depending on whether we're past a decimal point
                // or not.
                if (i as i32) < digits_before_dot && i + 1 < len {
                    return Err(Error::new("Invalid decimal: overflow from too many digits"));
                }

                if *digit >= 5 {
                    let carry = add_internal(&mut data, &ONE_INTERNAL_REPR);
                    if carry > 0 {
                        // Highly unlikely scenario which is more indicative of a bug
                        return Err(Error::new("Invalid decimal: overflow when rounding"));
                    }
                }
                // We're also one less digit so reduce the scale
                let diff = (len - i) as u32;
                if diff > scale {
                    return Err(Error::new("Invalid decimal: overflow from scale mismatch"));
                }
                scale -= diff;
                break;
            } else {
                data[0] = tmp[0];
                data[1] = tmp[1];
                data[2] = tmp[2];
                let carry = add_internal(&mut data, &[*digit]);
                if carry > 0 {
                    // Highly unlikely scenario which is more indicative of a bug
                    return Err(Error::new("Invalid decimal: overflow from carry"));
                }
            }
        }

        Ok(Decimal {
            lo: data[0],
            mid: data[1],
            hi: data[2],
            flags: flags(negative, scale),
        })
    }
}

impl FromStr for Decimal {
    type Err = Error;

    fn from_str(value: &str) -> Result<Decimal, Self::Err> {
        Decimal::from_str_radix(value, 10)
    }
}

impl FromPrimitive for Decimal {
    fn from_i32(n: i32) -> Option<Decimal> {
        let flags: u32;
        let value_copy: i64;
        if n >= 0 {
            flags = 0;
            value_copy = n as i64;
        } else {
            flags = SIGN_MASK;
            value_copy = -(n as i64);
        }
        Some(Decimal {
            flags,
            lo: value_copy as u32,
            mid: 0,
            hi: 0,
        })
    }

    fn from_i64(n: i64) -> Option<Decimal> {
        let flags: u32;
        let value_copy: i128;
        if n >= 0 {
            flags = 0;
            value_copy = n as i128;
        } else {
            flags = SIGN_MASK;
            value_copy = -(n as i128);
        }
        Some(Decimal {
            flags,
            lo: value_copy as u32,
            mid: (value_copy >> 32) as u32,
            hi: 0,
        })
    }

    fn from_u32(n: u32) -> Option<Decimal> {
        Some(Decimal {
            flags: 0,
            lo: n,
            mid: 0,
            hi: 0,
        })
    }

    fn from_u64(n: u64) -> Option<Decimal> {
        Some(Decimal {
            flags: 0,
            lo: n as u32,
            mid: (n >> 32) as u32,
            hi: 0,
        })
    }

    fn from_f32(n: f32) -> Option<Decimal> {
        // Handle the case if it is NaN, Infinity or -Infinity
        if !n.is_finite() {
            return None;
        }

        // It's a shame we can't use a union for this due to it being broken up by bits
        // i.e. 1/8/23 (sign, exponent, mantissa)
        // See https://en.wikipedia.org/wiki/IEEE_754-1985
        // n = (sign*-1) * 2^exp * mantissa
        // Decimal of course stores this differently... 10^-exp * significand
        let raw = n.to_bits();
        let positive = (raw >> 31) == 0;
        let biased_exponent = ((raw >> 23) & 0xFF) as i32;
        let mantissa = raw & 0x007F_FFFF;

        // Handle the special zero case
        if biased_exponent == 0 && mantissa == 0 {
            let mut zero = Decimal::zero();
            if !positive {
                zero.set_sign_negative(true);
            }
            return Some(zero);
        }

        // Get the bits and exponent2
        let mut exponent2 = biased_exponent - 127;
        let mut bits = [mantissa, 0u32, 0u32];
        if biased_exponent == 0 {
            // Denormalized number - correct the exponent
            exponent2 += 1;
        } else {
            // Add extra hidden bit to mantissa
            bits[0] |= 0x0080_0000;
        }

        // The act of copying a mantissa as integer bits is equivalent to shifting
        // left the mantissa 23 bits. The exponent is reduced to compensate.
        exponent2 -= 23;

        // Convert to decimal
        Decimal::base2_to_decimal(&mut bits, exponent2, positive, false)
    }

    fn from_f64(n: f64) -> Option<Decimal> {
        // Handle the case if it is NaN, Infinity or -Infinity
        if !n.is_finite() {
            return None;
        }

        // It's a shame we can't use a union for this due to it being broken up by bits
        // i.e. 1/11/52 (sign, exponent, mantissa)
        // See https://en.wikipedia.org/wiki/IEEE_754-1985
        // n = (sign*-1) * 2^exp * mantissa
        // Decimal of course stores this differently... 10^-exp * significand
        let raw = n.to_bits();
        let positive = (raw >> 63) == 0;
        let biased_exponent = ((raw >> 52) & 0x7FF) as i32;
        let mantissa = raw & 0x000F_FFFF_FFFF_FFFF;

        // Handle the special zero case
        if biased_exponent == 0 && mantissa == 0 {
            let mut zero = Decimal::zero();
            if !positive {
                zero.set_sign_negative(true);
            }
            return Some(zero);
        }

        // Get the bits and exponent2
        let mut exponent2 = biased_exponent - 1023;
        let mut bits = [
            (mantissa & 0xFFFF_FFFF) as u32,
            ((mantissa >> 32) & 0xFFFF_FFFF) as u32,
            0u32,
        ];
        if biased_exponent == 0 {
            // Denormalized number - correct the exponent
            exponent2 += 1;
        } else {
            // Add extra hidden bit to mantissa
            bits[1] |= 0x0010_0000;
        }

        // The act of copying a mantissa as integer bits is equivalent to shifting
        // left the mantissa 52 bits. The exponent is reduced to compensate.
        exponent2 -= 52;

        // Convert to decimal
        Decimal::base2_to_decimal(&mut bits, exponent2, positive, true)
    }
}

impl ToPrimitive for Decimal {
    fn to_i64(&self) -> Option<i64> {
        let d = self.trunc();
        // Quick overflow check
        if d.hi != 0 || (d.mid & 0x8000_0000) > 0 {
            // Overflow
            return None;
        }

        let raw: i64 = (i64::from(d.mid) << 32) | i64::from(d.lo);
        if self.is_sign_negative() {
            Some(-raw)
        } else {
            Some(raw)
        }
    }

    fn to_u64(&self) -> Option<u64> {
        if self.is_sign_negative() {
            return None;
        }

        let d = self.trunc();
        if d.hi != 0 {
            // Overflow
            return None;
        }

        Some((u64::from(d.mid) << 32) | u64::from(d.lo))
    }

    fn to_f64(&self) -> Option<f64> {
        if self.scale() == 0 {
            let integer = self.to_i64();
            match integer {
                Some(i) => Some(i as f64),
                None => None,
            }
        } else {
            let sign: f64 = if self.is_sign_negative() { -1.0 } else { 1.0 };
            let mut mantissa: u128 = self.lo.into();
            mantissa |= (self.mid as u128) << 32;
            mantissa |= (self.hi as u128) << 64;
            // scale is at most 28, so this fits comfortably into a u128.
            let scale = self.scale();
            let precision: u128 = 10_u128.pow(scale);
            let integral_part = mantissa / precision;
            let frac_part = mantissa % precision;
            let frac_f64 = (frac_part as f64) / (precision as f64);
            let value = sign * ((integral_part as f64) + frac_f64);
            let round_to = 10f64.powf(self.scale() as f64);
            Some(value * round_to / round_to)
        }
    }
}

impl fmt::Display for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        // Get the scale - where we need to put the decimal point
        let mut scale = self.scale() as usize;

        // Convert to a string and manipulate that (neg at front, inject decimal)
        let mut chars = Vec::new();
        let mut working = [self.lo, self.mid, self.hi];
        while !is_all_zero(&working) {
            let remainder = div_by_u32(&mut working, 10u32);
            chars.push(char::from(b'0' + remainder as u8));
        }
        while scale > chars.len() {
            chars.push('0');
        }

        let mut rep = chars.iter().rev().collect::<String>();
        let len = rep.len();

        if let Some(n_dp) = f.precision() {
            if n_dp < scale {
                rep.truncate(len - scale + n_dp)
            } else {
                let zeros = repeat("0").take(n_dp - scale).collect::<String>();
                rep.push_str(&zeros[..]);
            }
            scale = n_dp;
        }
        let len = rep.len();

        // Inject the decimal point
        if scale > 0 {
            // Must be a low fractional
            // TODO: Remove this condition as it's no longer possible for `scale > len`
            if scale > len {
                let mut new_rep = String::new();
                let zeros = repeat("0").take(scale as usize - len).collect::<String>();
                new_rep.push_str("0.");
                new_rep.push_str(&zeros[..]);
                new_rep.push_str(&rep[..]);
                rep = new_rep;
            } else if scale == len {
                rep.insert(0, '.');
                rep.insert(0, '0');
            } else {
                rep.insert(len - scale as usize, '.');
            }
        } else if rep.is_empty() {
            // corner case for when we truncated everything in a low fractional
            rep.insert(0, '0');
        }

        f.pad_integral(self.is_sign_positive(), "", &rep)
    }
}

impl fmt::Debug for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Display::fmt(self, f)
    }
}

impl Neg for Decimal {
    type Output = Decimal;

    fn neg(self) -> Decimal {
        -&self
    }
}

impl<'a> Neg for &'a Decimal {
    type Output = Decimal;

    fn neg(self) -> Decimal {
        Decimal {
            flags: flags(!self.is_sign_negative(), self.scale()),
            hi: self.hi,
            lo: self.lo,
            mid: self.mid,
        }
    }
}

forward_all_binop!(impl Add for Decimal, add);

impl<'a, 'b> Add<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline(always)]
    fn add(self, other: &Decimal) -> Decimal {
        match self.checked_add(*other) {
            Some(sum) => sum,
            None => panic!("Addition overflowed"),
        }
    }
}

impl AddAssign for Decimal {
    fn add_assign(&mut self, other: Decimal) {
        let result = self.add(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> AddAssign<&'a Decimal> for Decimal {
    fn add_assign(&mut self, other: &'a Decimal) {
        Decimal::add_assign(self, *other)
    }
}

impl<'a> AddAssign<Decimal> for &'a mut Decimal {
    fn add_assign(&mut self, other: Decimal) {
        Decimal::add_assign(*self, other)
    }
}

impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal {
    fn add_assign(&mut self, other: &'a Decimal) {
        Decimal::add_assign(*self, *other)
    }
}

forward_all_binop!(impl Sub for Decimal, sub);

impl<'a, 'b> Sub<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline(always)]
    fn sub(self, other: &Decimal) -> Decimal {
        match self.checked_sub(*other) {
            Some(diff) => diff,
            None => panic!("Subtraction overflowed"),
        }
    }
}

impl SubAssign for Decimal {
    fn sub_assign(&mut self, other: Decimal) {
        let result = self.sub(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> SubAssign<&'a Decimal> for Decimal {
    fn sub_assign(&mut self, other: &'a Decimal) {
        Decimal::sub_assign(self, *other)
    }
}

impl<'a> SubAssign<Decimal> for &'a mut Decimal {
    fn sub_assign(&mut self, other: Decimal) {
        Decimal::sub_assign(*self, other)
    }
}

impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal {
    fn sub_assign(&mut self, other: &'a Decimal) {
        Decimal::sub_assign(*self, *other)
    }
}

forward_all_binop!(impl Mul for Decimal, mul);

impl<'a, 'b> Mul<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline]
    fn mul(self, other: &Decimal) -> Decimal {
        match self.checked_mul(*other) {
            Some(prod) => prod,
            None => panic!("Multiplication overflowed"),
        }
    }
}

impl MulAssign for Decimal {
    fn mul_assign(&mut self, other: Decimal) {
        let result = self.mul(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> MulAssign<&'a Decimal> for Decimal {
    fn mul_assign(&mut self, other: &'a Decimal) {
        Decimal::mul_assign(self, *other)
    }
}

impl<'a> MulAssign<Decimal> for &'a mut Decimal {
    fn mul_assign(&mut self, other: Decimal) {
        Decimal::mul_assign(*self, other)
    }
}

impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal {
    fn mul_assign(&mut self, other: &'a Decimal) {
        Decimal::mul_assign(*self, *other)
    }
}

forward_all_binop!(impl Div for Decimal, div);

impl<'a, 'b> Div<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    fn div(self, other: &Decimal) -> Decimal {
        match self.div_impl(*other) {
            DivResult::Ok(quot) => quot,
            DivResult::Overflow => panic!("Division overflowed"),
            DivResult::DivByZero => panic!("Division by zero"),
        }
    }
}

impl DivAssign for Decimal {
    fn div_assign(&mut self, other: Decimal) {
        let result = self.div(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> DivAssign<&'a Decimal> for Decimal {
    fn div_assign(&mut self, other: &'a Decimal) {
        Decimal::div_assign(self, *other)
    }
}

impl<'a> DivAssign<Decimal> for &'a mut Decimal {
    fn div_assign(&mut self, other: Decimal) {
        Decimal::div_assign(*self, other)
    }
}

impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal {
    fn div_assign(&mut self, other: &'a Decimal) {
        Decimal::div_assign(*self, *other)
    }
}

forward_all_binop!(impl Rem for Decimal, rem);

impl<'a, 'b> Rem<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline]
    fn rem(self, other: &Decimal) -> Decimal {
        match self.checked_rem(*other) {
            Some(rem) => rem,
            None => panic!("Division by zero"),
        }
    }
}

impl RemAssign for Decimal {
    fn rem_assign(&mut self, other: Decimal) {
        let result = self.rem(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> RemAssign<&'a Decimal> for Decimal {
    fn rem_assign(&mut self, other: &'a Decimal) {
        Decimal::rem_assign(self, *other)
    }
}

impl<'a> RemAssign<Decimal> for &'a mut Decimal {
    fn rem_assign(&mut self, other: Decimal) {
        Decimal::rem_assign(*self, other)
    }
}

impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal {
    fn rem_assign(&mut self, other: &'a Decimal) {
        Decimal::rem_assign(*self, *other)
    }
}

impl PartialEq for Decimal {
    #[inline]
    fn eq(&self, other: &Decimal) -> bool {
        self.cmp(other) == Equal
    }
}

impl Eq for Decimal {}

impl Hash for Decimal {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let n = self.normalize();
        n.lo.hash(state);
        n.mid.hash(state);
        n.hi.hash(state);
        n.flags.hash(state);
    }
}

impl PartialOrd for Decimal {
    #[inline]
    fn partial_cmp(&self, other: &Decimal) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Decimal {
    fn cmp(&self, other: &Decimal) -> Ordering {
        // Quick exit if major differences
        if self.is_zero() && other.is_zero() {
            return Ordering::Equal;
        }
        let self_negative = self.is_sign_negative();
        let other_negative = other.is_sign_negative();
        if self_negative && !other_negative {
            return Ordering::Less;
        } else if !self_negative && other_negative {
            return Ordering::Greater;
        }

        // If we have 1.23 and 1.2345 then we have
        //  123 scale 2 and 12345 scale 4
        //  We need to convert the first to
        //  12300 scale 4 so we can compare equally
        let left: &Decimal;
        let right: &Decimal;
        if self_negative && other_negative {
            // Both are negative, so reverse cmp
            left = other;
            right = self;
        } else {
            left = self;
            right = other;
        }
        let mut left_scale = left.scale();
        let mut right_scale = right.scale();

        if left_scale == right_scale {
            // Fast path for same scale
            if left.hi != right.hi {
                return left.hi.cmp(&right.hi);
            }
            if left.mid != right.mid {
                return left.mid.cmp(&right.mid);
            }
            return left.lo.cmp(&right.lo);
        }

        // Rescale and compare
        let mut left_raw = [left.lo, left.mid, left.hi];
        let mut right_raw = [right.lo, right.mid, right.hi];
        rescale_to_maximum_scale(&mut left_raw, &mut left_scale, &mut right_raw, &mut right_scale);
        cmp_internal(&left_raw, &right_raw)
    }
}

impl Sum for Decimal {
    fn sum<I: Iterator<Item = Decimal>>(iter: I) -> Self {
        let mut sum = Decimal::zero();
        for i in iter {
            sum += i;
        }
        sum
    }
}

#[cfg(test)]
mod test {
    // Tests on private methods.
    //
    // All public tests should go under `tests/`.

    use super::*;

    #[test]
    fn it_can_rescale_to_maximum_scale() {
        fn extract(value: &str) -> ([u32; 3], u32) {
            let v = Decimal::from_str(value).unwrap();
            ([v.lo, v.mid, v.hi], v.scale())
        }

        let tests = &[
            ("1", "1", "1", "1"),
            ("1", "1.0", "1.0", "1.0"),
            ("1", "1.00000", "1.00000", "1.00000"),
            ("1", "1.0000000000", "1.0000000000", "1.0000000000"),
            (
                "1",
                "1.00000000000000000000",
                "1.00000000000000000000",
                "1.00000000000000000000",
            ),
            ("1.1", "1.1", "1.1", "1.1"),
            ("1.1", "1.10000", "1.10000", "1.10000"),
            ("1.1", "1.1000000000", "1.1000000000", "1.1000000000"),
            (
                "1.1",
                "1.10000000000000000000",
                "1.10000000000000000000",
                "1.10000000000000000000",
            ),
            (
                "0.6386554621848739495798319328",
                "11.815126050420168067226890757",
                "0.638655462184873949579831933",
                "11.815126050420168067226890757",
            ),
            (
                "0.0872727272727272727272727272", // Scale 28
                "843.65000000",                   // Scale 8
                "0.0872727272727272727272727",    // 25
                "843.6500000000000000000000000",  // 25
            ),
        ];

        for &(left_raw, right_raw, expected_left, expected_right) in tests {
            // Left = the value to rescale
            // Right = the new scale we're scaling to
            // Expected = the expected left value after rescale
            let (expected_left, expected_lscale) = extract(expected_left);
            let (expected_right, expected_rscale) = extract(expected_right);

            let (mut left, mut left_scale) = extract(left_raw);
            let (mut right, mut right_scale) = extract(right_raw);
            rescale_to_maximum_scale(&mut left, &mut left_scale, &mut right, &mut right_scale);
            assert_eq!(left, expected_left);
            assert_eq!(left_scale, expected_lscale);
            assert_eq!(right, expected_right);
            assert_eq!(right_scale, expected_rscale);

            // Also test the transitive case
            let (mut left, mut left_scale) = extract(left_raw);
            let (mut right, mut right_scale) = extract(right_raw);
            rescale_to_maximum_scale(&mut right, &mut right_scale, &mut left, &mut left_scale);
            assert_eq!(left, expected_left);
            assert_eq!(left_scale, expected_lscale);
            assert_eq!(right, expected_right);
            assert_eq!(right_scale, expected_rscale);
        }
    }

    #[test]
    fn it_can_rescale_internal() {
        fn extract(value: &str) -> ([u32; 3], u32) {
            let v = Decimal::from_str(value).unwrap();
            ([v.lo, v.mid, v.hi], v.scale())
        }

        let tests = &[
            ("1", 0, "1"),
            ("1", 1, "1.0"),
            ("1", 5, "1.00000"),
            ("1", 10, "1.0000000000"),
            ("1", 20, "1.00000000000000000000"),
            ("0.6386554621848739495798319328", 27, "0.638655462184873949579831933"),
            (
                "843.65000000",                  // Scale 8
                25,                              // 25
                "843.6500000000000000000000000", // 25
            ),
            (
                "843.65000000",                     // Scale 8
                30,                                 // 30
                "843.6500000000000000000000000000", // 28
            ),
        ];

        for &(value_raw, new_scale, expected_value) in tests {
            let (expected_value, _) = extract(expected_value);
            let (mut value, mut value_scale) = extract(value_raw);
            rescale_internal(&mut value, &mut value_scale, new_scale);
            assert_eq!(value, expected_value);
        }
    }
}