1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/// This file contains reference implementations of all DCT and DST transforms.
/// The goal of these implementations is not to be fast, but to match the mathematical definitions as closely as possible and to be easy to follow and debug
/// The reference for the mathematical definitions was section 9 of "The Discrete W Transforms" by Wang and Hunt, but with the normalization/orthogonalization factors omitted.
use std::f64;
/// Simplified version of DCT1
pub fn reference_dct1(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == 0 || input_index == input.len() - 1 {
0.5
} else {
1.0
};
let cos_inner = (output_index as f64) * (input_index as f64) * f64::consts::PI
/ ((input.len() - 1) as f64);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DCT2
pub fn reference_dct2(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let cos_inner = (output_index as f64) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DCT3
pub fn reference_dct3(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == 0 { 0.5 } else { 1.0 };
let cos_inner = (output_index as f64 + 0.5) * (input_index as f64) * f64::consts::PI
/ (input.len() as f64);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DCT4
pub fn reference_dct4(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let cos_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DCT5
pub fn reference_dct5(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == 0 { 0.5 } else { 1.0 };
let cos_inner = (output_index as f64) * (input_index as f64) * f64::consts::PI
/ (input.len() as f64 - 0.5);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DCT6
pub fn reference_dct6(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == input.len() - 1 {
0.5
} else {
1.0
};
let cos_inner = (output_index as f64) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64 - 0.5);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DCT7
pub fn reference_dct7(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == 0 { 0.5 } else { 1.0 };
let cos_inner = (output_index as f64 + 0.5) * (input_index as f64) * f64::consts::PI
/ (input.len() as f64 - 0.5);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DCT8
pub fn reference_dct8(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let cos_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64 + 0.5);
let twiddle = cos_inner.cos();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST1
pub fn reference_dst1(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 1.0) * (input_index as f64 + 1.0) * f64::consts::PI
/ ((input.len() + 1) as f64);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST2
pub fn reference_dst2(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 1.0) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST3
pub fn reference_dst3(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == input.len() - 1 {
0.5
} else {
1.0
};
let sin_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 1.0) * f64::consts::PI
/ (input.len() as f64);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
/// Simplified version of DST4
pub fn reference_dst4(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST5
pub fn reference_dst5(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 1.0) * (input_index as f64 + 1.0) * f64::consts::PI
/ ((input.len()) as f64 + 0.5);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST6
pub fn reference_dst6(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 1.0) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64 + 0.5);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST7
pub fn reference_dst7(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let sin_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 1.0) * f64::consts::PI
/ (input.len() as f64 + 0.5);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle;
}
result.push(entry);
}
result
}
/// Simplified version of DST8
pub fn reference_dst8(input: &[f64]) -> Vec<f64> {
let mut result = Vec::new();
for output_index in 0..input.len() {
let mut entry = 0.0;
for input_index in 0..input.len() {
let multiplier = if input_index == input.len() - 1 {
0.5
} else {
1.0
};
let sin_inner =
(output_index as f64 + 0.5) * (input_index as f64 + 0.5) * f64::consts::PI
/ (input.len() as f64 - 0.5);
let twiddle = sin_inner.sin();
entry += input[input_index] * twiddle * multiplier;
}
result.push(entry);
}
result
}
|