1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
#![feature(test)]
#![allow(non_snake_case)]
#![allow(unused)]
extern crate rustfft;
extern crate test;
use test::Bencher;
use rustfft::algorithm::butterflies::*;
use rustfft::algorithm::Dft;
use rustfft::num_complex::Complex;
use rustfft::num_traits::Zero;
use rustfft::{Fft, FftNum};
use rustfft::{FftPlanner, FftPlannerAvx};
use primal_check::miller_rabin;
use std::sync::Arc;
/// This benchmark's purpose is to build some programmer intuition for planner heuristics
/// We have mixed radix 2xn, 3xn, 4xn, 6xn, 8xn, 9x, 12xn, and 16xn implementations -- for a given FFT of the form 2^xn * 3^m, which combination is the fastest? Is 12xn -> 4xn faster than 6xn -> 8xn?
/// Is it faster to put 9xn as an outer FFT of 8xn or as an inner FFT? this file autogenerates benchmarks that answer these questions
///
/// The "generate_3n2m_comparison_benchmarks" benchmark will print benchmark code to the console which should be pasted back into this file, basically a low-budget procedural macro
#[derive(Clone, Debug)]
struct FftSize {
len: usize,
power2: u32,
power3: u32,
}
impl FftSize {
fn new(len: usize) -> Self {
let power2 = len.trailing_zeros();
let mut remaining_factors = len >> power2;
let mut power3 = 0;
while remaining_factors % 3 == 0 {
power3 += 1;
remaining_factors /= 3;
}
assert!(remaining_factors == 1);
Self {
power2,
power3,
len,
}
}
fn divide(&self, other: &Self) -> Option<Self> {
if self.power2 <= other.power2 && self.power3 <= other.power3 {
Some(Self {
power2: other.power2 - self.power2,
power3: other.power3 - self.power3,
len: other.len / self.len,
})
} else {
None
}
}
}
// We don't need to generate a combinatoric explosion of tests that we know will be slow. filter_radix applies some dumb heuristics to filter out the most common slow cases
fn filter_radix(current_strategy: &[usize], potential_radix: &FftSize, is_butterfly: bool) -> bool {
// if we've seen any radix larger than this before, reject. otherwise we'll get a million reorderings of the same radixex, with benchmarking showing that smaller being higher is typically faster
if !is_butterfly
&& current_strategy
.iter()
.find(|i| **i > potential_radix.len && **i != 16)
.is_some()
{
return false;
}
// apply filters to size 2
if potential_radix.len == 2 {
// if our strategy already contains any 2's, 3's, or 4's, reject -- because 4, 6, or 8 will be faster, respectively
return !current_strategy.contains(&2)
&& !current_strategy.contains(&3)
&& !current_strategy.contains(&4);
}
// apply filters to size 3
if potential_radix.len == 3 {
// if our strategy already contains any 2's, 3's or 4s, reject -- because 6 and 9 and 12 will be faster, respectively
return !current_strategy.contains(&2)
&& !current_strategy.contains(&3)
&& !current_strategy.contains(&4);
}
// apply filters to size 4
if potential_radix.len == 4 {
// if our strategy already contains any 2's, reject -- because 8 will be faster
// if our strategy already contains 2 4's, don't add a third, because 2 8's would have been faster
// if our strategy already contains a 16, reject -- because 2 8's will be faster (8s are seriously fast guys)
return !current_strategy.contains(&2)
&& !current_strategy.contains(&3)
&& !current_strategy.contains(&4)
&& !current_strategy.contains(&16);
}
if potential_radix.len == 16 {
// if our strategy already contains a 4, reject -- because 2 8's will be faster (8s are seriously fast guys)
// if our strategy already contains a 16, reject -- benchmarking shows that 16s are very situational, and repeating them never helps)
return !current_strategy.contains(&4) && !current_strategy.contains(&16);
}
return true;
}
fn recursive_strategy_builder(
strategy_list: &mut Vec<Vec<usize>>,
last_ditch_strategy_list: &mut Vec<Vec<usize>>,
mut current_strategy: Vec<usize>,
len: FftSize,
butterfly_sizes: &[usize],
last_ditch_butterflies: &[usize],
available_radixes: &[FftSize],
) {
if butterfly_sizes.contains(&len.len) {
if filter_radix(¤t_strategy, &len, true) {
current_strategy.push(len.len);
//If this strategy contains a 2 or 3, it's very unlikely to be the fastest. we don't want to rule it out, because it's required sometimes, but don't use it unless there aren't any other
if current_strategy.contains(&2) || current_strategy.contains(&3) {
strategy_list.push(current_strategy.clone());
} else {
strategy_list.push(current_strategy.clone());
}
}
} else if last_ditch_butterflies.contains(&len.len) {
if filter_radix(¤t_strategy, &len, true) {
current_strategy.push(len.len);
last_ditch_strategy_list.push(current_strategy.clone());
}
} else if len.len > 1 {
for radix in available_radixes {
if filter_radix(¤t_strategy, radix, false) {
if let Some(inner) = radix.divide(&len) {
let mut cloned_strategy = current_strategy.clone();
cloned_strategy.push(radix.len);
recursive_strategy_builder(
strategy_list,
last_ditch_strategy_list,
cloned_strategy,
inner,
butterfly_sizes,
last_ditch_butterflies,
available_radixes,
);
}
}
}
}
}
// it's faster to filter strategies at the radix level since we can prune entire permutations, but some can only be done once the full plan is built
fn filter_strategy(strategy: &Vec<usize>) -> bool {
if strategy.contains(&16) {
let index = strategy.iter().position(|s| *s == 16).unwrap();
index == 0
|| index == strategy.len() - 1
|| index == strategy.len() - 2
|| (strategy[index - 1] < 12 && strategy[index + 1] >= 12)
} else {
true
}
}
// cargo bench generate_3n2m_comparison_benchmarks_32 -- --nocapture --ignored
#[ignore]
#[bench]
fn generate_3n2m_comparison_benchmarks_32(_: &mut test::Bencher) {
let butterfly_sizes = [128, 256, 512, 72, 36, 48, 54, 64];
let last_ditch_butterflies = [27, 9, 32, 24];
let available_radixes = [
FftSize::new(3),
FftSize::new(4),
FftSize::new(6),
FftSize::new(8),
FftSize::new(9),
FftSize::new(12),
FftSize::new(16),
];
let max_len: usize = 1 << 21;
let min_len = 64;
let max_power2 = max_len.trailing_zeros();
let max_power3 = (max_len as f32).log(3.0).ceil() as u32;
for power3 in 1..2 {
for power2 in 4..max_power2 {
let len = 3usize.pow(power3) << power2;
if len > max_len {
continue;
}
//let planned_fft : Arc<dyn Fft<f32>> = rustfft::FftPlanner::new(false).plan_fft(len);
// we want to catalog all the different possible ways there are to compute a FFT of size `len`
// we can do that by recursively looping over each radix, dividing our length by that radix, then recursively trying rach radix again
let mut strategies = vec![];
let mut last_ditch_strategies = vec![];
recursive_strategy_builder(
&mut strategies,
&mut last_ditch_strategies,
Vec::new(),
FftSize::new(len),
&butterfly_sizes,
&last_ditch_butterflies,
&available_radixes,
);
if strategies.len() == 0 {
strategies = last_ditch_strategies;
}
for mut s in strategies.into_iter().filter(filter_strategy) {
s.reverse();
let strategy_strings: Vec<_> = s.into_iter().map(|i| i.to_string()).collect();
let test_id = strategy_strings.join("_");
let strategy_array = strategy_strings.join(",");
println!("#[bench] fn comparef32__2power{:02}__3power{:02}__len{:08}__{}(b: &mut Bencher) {{ compare_fft_f32(b, &[{}]); }}", power2, power3, len, test_id, strategy_array);
}
}
}
}
// cargo bench generate_3n2m_comparison_benchmarks_64 -- --nocapture --ignored
#[ignore]
#[bench]
fn generate_3n2m_comparison_benchmarks_64(_: &mut test::Bencher) {
let butterfly_sizes = [512, 256, 128, 64, 36, 27, 24, 18, 12];
let last_ditch_butterflies = [32, 16, 8, 9];
let available_radixes = [
FftSize::new(3),
FftSize::new(4),
FftSize::new(6),
FftSize::new(8),
FftSize::new(9),
FftSize::new(12),
];
let max_len: usize = 1 << 21;
let min_len = 64;
let max_power2 = max_len.trailing_zeros();
let max_power3 = (max_len as f32).log(3.0).ceil() as u32;
for power3 in 0..1 {
for power2 in 3..max_power2 {
let len = 3usize.pow(power3) << power2;
if len > max_len {
continue;
}
//let planned_fft : Arc<dyn Fft<f32>> = rustfft::FftPlanner::new(false).plan_fft(len);
// we want to catalog all the different possible ways there are to compute a FFT of size `len`
// we can do that by recursively looping over each radix, dividing our length by that radix, then recursively trying rach radix again
// we can do that by recursively looping over each radix, dividing our length by that radix, then recursively trying rach radix again
let mut strategies = vec![];
let mut last_ditch_strategies = vec![];
recursive_strategy_builder(
&mut strategies,
&mut last_ditch_strategies,
Vec::new(),
FftSize::new(len),
&butterfly_sizes,
&last_ditch_butterflies,
&available_radixes,
);
if strategies.len() == 0 {
strategies = last_ditch_strategies;
}
for mut s in strategies.into_iter().filter(filter_strategy) {
s.reverse();
let strategy_strings: Vec<_> = s.into_iter().map(|i| i.to_string()).collect();
let test_id = strategy_strings.join("_");
let strategy_array = strategy_strings.join(",");
println!("#[bench] fn comparef64__2power{:02}__3power{:02}__len{:08}__{}(b: &mut Bencher) {{ compare_fft_f64(b, &[{}]); }}", power2, power3, len, test_id, strategy_array);
}
}
}
}
// cargo bench generate_3n2m_planned_benchmarks_32 -- --nocapture --ignored
#[ignore]
#[bench]
fn generate_3n2m_planned_benchmarks(_: &mut test::Bencher) {
let mut fft_sizes = vec![];
let max_len: usize = 1 << 23;
let max_power2 = max_len.trailing_zeros();
let max_power3 = (max_len as f32).log(3.0).ceil() as u32;
for power2 in 0..max_power2 {
for power3 in 0..max_power3 {
let len = 3usize.pow(power3) << power2;
if len > max_len {
continue;
}
if power3 < 2 && power2 > 16 {
continue;
}
if power3 < 3 && power2 > 17 {
continue;
}
if power2 < 1 {
continue;
}
fft_sizes.push(len);
}
}
for len in fft_sizes {
let power2 = len.trailing_zeros();
let mut remaining_factors = len >> power2;
let mut power3 = 0;
while remaining_factors % 3 == 0 {
power3 += 1;
remaining_factors /= 3;
}
println!("#[bench] fn comparef32_len{:07}_2power{:02}_3power{:02}(b: &mut Bencher) {{ bench_planned_fft_f32(b, {}); }}",len, power2, power3, len);
}
}
// cargo bench generate_3n2m_planned_benchmarks_64 -- --nocapture --ignored
#[ignore]
#[bench]
fn generate_3n2m_planned_benchmarks_64(_: &mut test::Bencher) {
let mut fft_sizes = vec![];
let max_len: usize = 1 << 23;
let max_power2 = max_len.trailing_zeros();
let max_power3 = (max_len as f32).log(3.0).ceil() as u32;
for power2 in 0..max_power2 {
for power3 in 0..max_power3 {
let len = 3usize.pow(power3) << power2;
if len > max_len {
continue;
}
if power3 < 1 && power2 > 13 {
continue;
}
if power3 < 4 && power2 > 14 {
continue;
}
if power2 < 2 {
continue;
}
fft_sizes.push(len);
}
}
for len in fft_sizes {
let power2 = len.trailing_zeros();
let mut remaining_factors = len >> power2;
let mut power3 = 0;
while remaining_factors % 3 == 0 {
power3 += 1;
remaining_factors /= 3;
}
println!("#[bench] fn comparef64_len{:07}_2power{:02}_3power{:02}(b: &mut Bencher) {{ bench_planned_fft_f64(b, {}); }}",len, power2, power3, len);
}
}
#[derive(Copy, Clone, Debug)]
pub struct PartialFactors {
power2: u32,
power3: u32,
power5: u32,
power7: u32,
power11: u32,
other_factors: usize,
}
impl PartialFactors {
pub fn compute(len: usize) -> Self {
let power2 = len.trailing_zeros();
let mut other_factors = len >> power2;
let mut power3 = 0;
while other_factors % 3 == 0 {
power3 += 1;
other_factors /= 3;
}
let mut power5 = 0;
while other_factors % 5 == 0 {
power5 += 1;
other_factors /= 5;
}
let mut power7 = 0;
while other_factors % 7 == 0 {
power7 += 1;
other_factors /= 7;
}
let mut power11 = 0;
while other_factors % 11 == 0 {
power11 += 1;
other_factors /= 11;
}
Self {
power2,
power3,
power5,
power7,
power11,
other_factors,
}
}
pub fn get_power2(&self) -> u32 {
self.power2
}
pub fn get_power3(&self) -> u32 {
self.power3
}
pub fn get_power5(&self) -> u32 {
self.power5
}
pub fn get_power7(&self) -> u32 {
self.power7
}
pub fn get_power11(&self) -> u32 {
self.power11
}
pub fn get_other_factors(&self) -> usize {
self.other_factors
}
pub fn product(&self) -> usize {
(self.other_factors
* 3usize.pow(self.power3)
* 5usize.pow(self.power5)
* 7usize.pow(self.power7)
* 11usize.pow(self.power11))
<< self.power2
}
pub fn product_power2power3(&self) -> usize {
3usize.pow(self.power3) << self.power2
}
#[allow(unused)]
pub fn divide_by(&self, divisor: &PartialFactors) -> Option<PartialFactors> {
let two_divides = self.power2 >= divisor.power2;
let three_divides = self.power3 >= divisor.power3;
let five_divides = self.power5 >= divisor.power5;
let seven_divides = self.power7 >= divisor.power7;
let eleven_divides = self.power11 >= divisor.power11;
let other_divides = self.other_factors % divisor.other_factors == 0;
if two_divides
&& three_divides
&& five_divides
&& seven_divides
&& eleven_divides
&& other_divides
{
Some(Self {
power2: self.power2 - divisor.power2,
power3: self.power3 - divisor.power3,
power5: self.power5 - divisor.power5,
power7: self.power7 - divisor.power7,
power11: self.power11 - divisor.power11,
other_factors: if self.other_factors == divisor.other_factors {
1
} else {
self.other_factors / divisor.other_factors
},
})
} else {
None
}
}
}
// cargo bench generate_raders_benchmarks -- --nocapture --ignored
#[ignore]
#[bench]
fn generate_raders_benchmarks(_: &mut test::Bencher) {
for len in 10usize..100000 {
if miller_rabin(len as u64) {
let inner_factors = PartialFactors::compute(len - 1);
if inner_factors.get_other_factors() == 1 && inner_factors.get_power11() > 0 {
println!("#[bench] fn comparef64_len{:07}_11p{:02}_bluesteins(b: &mut Bencher) {{ bench_planned_bluesteins_f64(b, {}); }}", len, inner_factors.get_power11(), len);
println!("#[bench] fn comparef64_len{:07}_11p{:02}_raders(b: &mut Bencher) {{ bench_planned_raders_f64(b, {}); }}", len, inner_factors.get_power11(), len);
}
}
}
}
fn wrap_fft<T: FftNum>(fft: impl Fft<T> + 'static) -> Arc<dyn Fft<T>> {
Arc::new(fft) as Arc<dyn Fft<T>>
}
// passes the given FFT length directly to the FFT planner
fn bench_planned_fft_f32(b: &mut Bencher, len: usize) {
let mut planner: FftPlanner<f32> = FftPlanner::new();
let fft = planner.plan_fft_forward(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| {
fft.process_with_scratch(&mut buffer, &mut scratch);
});
}
// passes the given FFT length directly to the FFT planner
fn bench_planned_fft_f64(b: &mut Bencher, len: usize) {
let mut planner: FftPlanner<f64> = FftPlanner::new();
let fft = planner.plan_fft_forward(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| {
fft.process_with_scratch(&mut buffer, &mut scratch);
});
}
/*
// Computes the given FFT length using Bluestein's Algorithm, using the planner to plan the inner FFT
fn bench_planned_bluesteins_f32(b: &mut Bencher, len: usize) {
let mut planner : FftPlannerAvx<f32> = FftPlannerAvx::new(false).unwrap();
let fft = planner.construct_bluesteins(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| { fft.process_with_scratch(&mut buffer, &mut scratch); });
}
// Computes the given FFT length using Rader's Algorithm, using the planner to plan the inner FFT
fn bench_planned_raders_f32(b: &mut Bencher, len: usize) {
let mut planner : FftPlannerAvx<f32> = FftPlannerAvx::new(false).unwrap();
let fft = planner.construct_raders(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| { fft.process_with_scratch(&mut buffer, &mut scratch); });
}
// Computes the given FFT length using Bluestein's Algorithm, using the planner to plan the inner FFT
fn bench_planned_bluesteins_f64(b: &mut Bencher, len: usize) {
let mut planner : FftPlannerAvx<f64> = FftPlannerAvx::new(false).unwrap();
let fft = planner.construct_bluesteins(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| { fft.process_with_scratch(&mut buffer, &mut scratch); });
}
// Computes the given FFT length using Rader's Algorithm, using the planner to plan the inner FFT
fn bench_planned_raders_f64(b: &mut Bencher, len: usize) {
let mut planner : FftPlannerAvx<f64> = FftPlannerAvx::new(false).unwrap();
let fft = planner.construct_raders(len);
let mut buffer = vec![Complex::zero(); fft.len()];
let mut scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
b.iter(|| { fft.process_with_scratch(&mut buffer, &mut scratch); });
}
#[bench] fn comparef64_len0000023_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 23); }
#[bench] fn comparef64_len0000023_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 23); }
#[bench] fn comparef64_len0000067_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 67); }
#[bench] fn comparef64_len0000067_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 67); }
#[bench] fn comparef64_len0000089_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 89); }
#[bench] fn comparef64_len0000089_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 89); }
#[bench] fn comparef64_len0000199_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 199); }
#[bench] fn comparef64_len0000199_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 199); }
#[bench] fn comparef64_len0000331_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 331); }
#[bench] fn comparef64_len0000331_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 331); }
#[bench] fn comparef64_len0000353_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 353); }
#[bench] fn comparef64_len0000353_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 353); }
#[bench] fn comparef64_len0000397_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 397); }
#[bench] fn comparef64_len0000397_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 397); }
#[bench] fn comparef64_len0000463_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 463); }
#[bench] fn comparef64_len0000463_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 463); }
#[bench] fn comparef64_len0000617_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 617); }
#[bench] fn comparef64_len0000617_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 617); }
#[bench] fn comparef64_len0000661_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 661); }
#[bench] fn comparef64_len0000661_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 661); }
#[bench] fn comparef64_len0000727_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 727); }
#[bench] fn comparef64_len0000727_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 727); }
#[bench] fn comparef64_len0000881_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 881); }
#[bench] fn comparef64_len0000881_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 881); }
#[bench] fn comparef64_len0000991_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 991); }
#[bench] fn comparef64_len0000991_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 991); }
#[bench] fn comparef64_len0001321_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 1321); }
#[bench] fn comparef64_len0001321_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 1321); }
#[bench] fn comparef64_len0001409_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 1409); }
#[bench] fn comparef64_len0001409_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 1409); }
#[bench] fn comparef64_len0001453_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 1453); }
#[bench] fn comparef64_len0001453_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 1453); }
#[bench] fn comparef64_len0001783_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 1783); }
#[bench] fn comparef64_len0001783_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 1783); }
#[bench] fn comparef64_len0002113_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2113); }
#[bench] fn comparef64_len0002113_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2113); }
#[bench] fn comparef64_len0002179_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2179); }
#[bench] fn comparef64_len0002179_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2179); }
#[bench] fn comparef64_len0002311_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2311); }
#[bench] fn comparef64_len0002311_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2311); }
#[bench] fn comparef64_len0002377_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2377); }
#[bench] fn comparef64_len0002377_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2377); }
#[bench] fn comparef64_len0002663_11p03_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2663); }
#[bench] fn comparef64_len0002663_11p03_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2663); }
#[bench] fn comparef64_len0002971_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 2971); }
#[bench] fn comparef64_len0002971_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 2971); }
#[bench] fn comparef64_len0003169_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3169); }
#[bench] fn comparef64_len0003169_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3169); }
#[bench] fn comparef64_len0003301_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3301); }
#[bench] fn comparef64_len0003301_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3301); }
#[bench] fn comparef64_len0003389_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3389); }
#[bench] fn comparef64_len0003389_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3389); }
#[bench] fn comparef64_len0003631_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3631); }
#[bench] fn comparef64_len0003631_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3631); }
#[bench] fn comparef64_len0003697_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3697); }
#[bench] fn comparef64_len0003697_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3697); }
#[bench] fn comparef64_len0003851_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 3851); }
#[bench] fn comparef64_len0003851_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 3851); }
#[bench] fn comparef64_len0004159_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 4159); }
#[bench] fn comparef64_len0004159_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 4159); }
#[bench] fn comparef64_len0004357_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 4357); }
#[bench] fn comparef64_len0004357_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 4357); }
#[bench] fn comparef64_len0004621_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 4621); }
#[bench] fn comparef64_len0004621_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 4621); }
#[bench] fn comparef64_len0004951_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 4951); }
#[bench] fn comparef64_len0004951_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 4951); }
#[bench] fn comparef64_len0005281_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 5281); }
#[bench] fn comparef64_len0005281_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 5281); }
#[bench] fn comparef64_len0005347_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 5347); }
#[bench] fn comparef64_len0005347_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 5347); }
#[bench] fn comparef64_len0005501_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 5501); }
#[bench] fn comparef64_len0005501_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 5501); }
#[bench] fn comparef64_len0006337_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 6337); }
#[bench] fn comparef64_len0006337_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 6337); }
#[bench] fn comparef64_len0006469_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 6469); }
#[bench] fn comparef64_len0006469_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 6469); }
#[bench] fn comparef64_len0007129_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 7129); }
#[bench] fn comparef64_len0007129_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 7129); }
#[bench] fn comparef64_len0007393_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 7393); }
#[bench] fn comparef64_len0007393_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 7393); }
#[bench] fn comparef64_len0007547_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 7547); }
#[bench] fn comparef64_len0007547_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 7547); }
#[bench] fn comparef64_len0008317_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 8317); }
#[bench] fn comparef64_len0008317_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 8317); }
#[bench] fn comparef64_len0008713_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 8713); }
#[bench] fn comparef64_len0008713_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 8713); }
#[bench] fn comparef64_len0009241_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 9241); }
#[bench] fn comparef64_len0009241_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 9241); }
#[bench] fn comparef64_len0009857_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 9857); }
#[bench] fn comparef64_len0009857_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 9857); }
#[bench] fn comparef64_len0009901_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 9901); }
#[bench] fn comparef64_len0009901_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 9901); }
#[bench] fn comparef64_len0010781_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 10781); }
#[bench] fn comparef64_len0010781_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 10781); }
#[bench] fn comparef64_len0010891_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 10891); }
#[bench] fn comparef64_len0010891_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 10891); }
#[bench] fn comparef64_len0011551_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 11551); }
#[bench] fn comparef64_len0011551_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 11551); }
#[bench] fn comparef64_len0011617_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 11617); }
#[bench] fn comparef64_len0011617_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 11617); }
#[bench] fn comparef64_len0012101_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 12101); }
#[bench] fn comparef64_len0012101_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 12101); }
#[bench] fn comparef64_len0013553_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 13553); }
#[bench] fn comparef64_len0013553_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 13553); }
#[bench] fn comparef64_len0013751_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 13751); }
#[bench] fn comparef64_len0013751_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 13751); }
#[bench] fn comparef64_len0014081_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 14081); }
#[bench] fn comparef64_len0014081_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 14081); }
#[bench] fn comparef64_len0014851_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 14851); }
#[bench] fn comparef64_len0014851_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 14851); }
#[bench] fn comparef64_len0015401_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 15401); }
#[bench] fn comparef64_len0015401_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 15401); }
#[bench] fn comparef64_len0015973_11p03_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 15973); }
#[bench] fn comparef64_len0015973_11p03_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 15973); }
#[bench] fn comparef64_len0016633_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 16633); }
#[bench] fn comparef64_len0016633_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 16633); }
#[bench] fn comparef64_len0018481_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 18481); }
#[bench] fn comparef64_len0018481_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 18481); }
#[bench] fn comparef64_len0019009_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 19009); }
#[bench] fn comparef64_len0019009_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 19009); }
#[bench] fn comparef64_len0019603_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 19603); }
#[bench] fn comparef64_len0019603_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 19603); }
#[bench] fn comparef64_len0019801_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 19801); }
#[bench] fn comparef64_len0019801_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 19801); }
#[bench] fn comparef64_len0021121_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 21121); }
#[bench] fn comparef64_len0021121_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 21121); }
#[bench] fn comparef64_len0022639_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 22639); }
#[bench] fn comparef64_len0022639_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 22639); }
#[bench] fn comparef64_len0023761_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 23761); }
#[bench] fn comparef64_len0023761_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 23761); }
#[bench] fn comparef64_len0025411_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 25411); }
#[bench] fn comparef64_len0025411_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 25411); }
#[bench] fn comparef64_len0025873_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 25873); }
#[bench] fn comparef64_len0025873_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 25873); }
#[bench] fn comparef64_len0026731_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 26731); }
#[bench] fn comparef64_len0026731_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 26731); }
#[bench] fn comparef64_len0026951_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 26951); }
#[bench] fn comparef64_len0026951_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 26951); }
#[bench] fn comparef64_len0028513_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 28513); }
#[bench] fn comparef64_len0028513_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 28513); }
#[bench] fn comparef64_len0029569_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 29569); }
#[bench] fn comparef64_len0029569_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 29569); }
#[bench] fn comparef64_len0030493_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 30493); }
#[bench] fn comparef64_len0030493_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 30493); }
#[bench] fn comparef64_len0030977_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 30977); }
#[bench] fn comparef64_len0030977_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 30977); }
#[bench] fn comparef64_len0032077_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 32077); }
#[bench] fn comparef64_len0032077_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 32077); }
#[bench] fn comparef64_len0032341_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 32341); }
#[bench] fn comparef64_len0032341_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 32341); }
#[bench] fn comparef64_len0034651_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 34651); }
#[bench] fn comparef64_len0034651_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 34651); }
#[bench] fn comparef64_len0034849_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 34849); }
#[bench] fn comparef64_len0034849_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 34849); }
#[bench] fn comparef64_len0035201_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 35201); }
#[bench] fn comparef64_len0035201_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 35201); }
#[bench] fn comparef64_len0037423_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 37423); }
#[bench] fn comparef64_len0037423_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 37423); }
#[bench] fn comparef64_len0038501_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 38501); }
#[bench] fn comparef64_len0038501_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 38501); }
#[bench] fn comparef64_len0047521_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 47521); }
#[bench] fn comparef64_len0047521_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 47521); }
#[bench] fn comparef64_len0047917_11p03_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 47917); }
#[bench] fn comparef64_len0047917_11p03_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 47917); }
#[bench] fn comparef64_len0050821_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 50821); }
#[bench] fn comparef64_len0050821_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 50821); }
#[bench] fn comparef64_len0055001_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 55001); }
#[bench] fn comparef64_len0055001_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 55001); }
#[bench] fn comparef64_len0055441_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 55441); }
#[bench] fn comparef64_len0055441_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 55441); }
#[bench] fn comparef64_len0055903_11p03_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 55903); }
#[bench] fn comparef64_len0055903_11p03_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 55903); }
#[bench] fn comparef64_len0057751_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 57751); }
#[bench] fn comparef64_len0057751_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 57751); }
#[bench] fn comparef64_len0063361_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 63361); }
#[bench] fn comparef64_len0063361_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 63361); }
#[bench] fn comparef64_len0064153_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 64153); }
#[bench] fn comparef64_len0064153_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 64153); }
#[bench] fn comparef64_len0066529_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 66529); }
#[bench] fn comparef64_len0066529_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 66529); }
#[bench] fn comparef64_len0068993_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 68993); }
#[bench] fn comparef64_len0068993_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 68993); }
#[bench] fn comparef64_len0069697_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 69697); }
#[bench] fn comparef64_len0069697_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 69697); }
#[bench] fn comparef64_len0076231_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 76231); }
#[bench] fn comparef64_len0076231_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 76231); }
#[bench] fn comparef64_len0077617_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 77617); }
#[bench] fn comparef64_len0077617_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 77617); }
#[bench] fn comparef64_len0079201_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 79201); }
#[bench] fn comparef64_len0079201_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 79201); }
#[bench] fn comparef64_len0079861_11p03_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 79861); }
#[bench] fn comparef64_len0079861_11p03_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 79861); }
#[bench] fn comparef64_len0080191_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 80191); }
#[bench] fn comparef64_len0080191_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 80191); }
#[bench] fn comparef64_len0084481_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 84481); }
#[bench] fn comparef64_len0084481_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 84481); }
#[bench] fn comparef64_len0084701_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 84701); }
#[bench] fn comparef64_len0084701_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 84701); }
#[bench] fn comparef64_len0087121_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 87121); }
#[bench] fn comparef64_len0087121_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 87121); }
#[bench] fn comparef64_len0088001_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 88001); }
#[bench] fn comparef64_len0088001_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 88001); }
#[bench] fn comparef64_len0089101_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 89101); }
#[bench] fn comparef64_len0089101_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 89101); }
#[bench] fn comparef64_len0092401_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 92401); }
#[bench] fn comparef64_len0092401_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 92401); }
#[bench] fn comparef64_len0097021_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 97021); }
#[bench] fn comparef64_len0097021_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 97021); }
#[bench] fn comparef64_len0098011_11p02_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 98011); }
#[bench] fn comparef64_len0098011_11p02_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 98011); }
#[bench] fn comparef64_len0098561_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 98561); }
#[bench] fn comparef64_len0098561_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 98561); }
#[bench] fn comparef64_len0099793_11p01_bluesteins(b: &mut Bencher) { bench_planned_bluesteins_f64(b, 99793); }
#[bench] fn comparef64_len0099793_11p01_raders(b: &mut Bencher) { bench_planned_raders_f64(b, 99793); }
*/
|