1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
//! To test the accuracy of our FFT algorithm, we first test that our
//! naive Dft function is correct by comparing its output against several
//! known signal/spectrum relationships. Then, we generate random signals
//! for a variety of lengths, and test that our FFT algorithm matches our
//! Dft calculation for those signals.
use std::sync::Arc;
use num_traits::Float;
use rustfft::{
algorithm::{BluesteinsAlgorithm, Radix4},
num_complex::Complex,
Fft, FftNum, FftPlanner,
};
use rustfft::{num_traits::Zero, FftDirection};
use rand::distributions::{uniform::SampleUniform, Distribution, Uniform};
use rand::{rngs::StdRng, SeedableRng};
use wasm_bindgen_test::wasm_bindgen_test;
/// The seed for the random number generator used to generate
/// random signals. It's defined here so that we have deterministic
/// tests
const RNG_SEED: [u8; 32] = [
1, 9, 1, 0, 1, 1, 4, 3, 1, 4, 9, 8, 4, 1, 4, 8, 2, 8, 1, 2, 2, 2, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9,
];
/// Returns true if the mean difference in the elements of the two vectors
/// is small
fn compare_vectors<T: rustfft::FftNum + Float>(vec1: &[Complex<T>], vec2: &[Complex<T>]) -> bool {
assert_eq!(vec1.len(), vec2.len());
let mut error = T::zero();
for (&a, &b) in vec1.iter().zip(vec2.iter()) {
error = error + (a - b).norm();
}
return (error / T::from_usize(vec1.len()).unwrap()) < T::from_f32(0.1).unwrap();
}
fn fft_matches_control<T: FftNum + Float>(control: Arc<dyn Fft<T>>, input: &[Complex<T>]) -> bool {
let mut control_input = input.to_vec();
let mut planner = FftPlanner::new();
let fft = planner.plan_fft(control.len(), control.fft_direction());
assert_eq!(
fft.len(),
control.len(),
"FFTplanner created FFT of wrong length"
);
assert_eq!(
fft.fft_direction(),
control.fft_direction(),
"FFTplanner created FFT of wrong direction"
);
let scratch_max = std::cmp::max(
control.get_inplace_scratch_len(),
std::cmp::max(
fft.get_inplace_scratch_len(),
std::cmp::max(
fft.get_outofplace_scratch_len(),
fft.get_immutable_scratch_len(),
),
),
);
let mut scratch = vec![Zero::zero(); scratch_max];
control.process_with_scratch(&mut control_input, &mut scratch);
let mut test_output_inplace = input.to_vec();
fft.process_with_scratch(&mut test_output_inplace, &mut scratch);
let mut input_oop = input.to_vec();
let mut test_output_oop = input.to_vec();
fft.process_outofplace_with_scratch(&mut input_oop, &mut test_output_oop, &mut scratch);
let mut test_output_immut = input.to_vec();
fft.process_immutable_with_scratch(input, &mut test_output_immut, &mut scratch);
return compare_vectors(&control_input, &test_output_inplace)
&& compare_vectors(&control_input, &test_output_oop)
&& compare_vectors(&control_input, &test_output_immut);
}
fn random_signal<T: FftNum + SampleUniform>(length: usize) -> Vec<Complex<T>> {
let mut sig = Vec::with_capacity(length);
let dist: Uniform<T> = Uniform::new(T::zero(), T::from_f64(10.0).unwrap());
let mut rng: StdRng = SeedableRng::from_seed(RNG_SEED);
for _ in 0..length {
sig.push(Complex {
re: (dist.sample(&mut rng)),
im: (dist.sample(&mut rng)),
});
}
return sig;
}
// A cache that makes setup for integration tests faster
struct ControlCache<T: FftNum> {
fft_cache: Vec<Arc<dyn Fft<T>>>,
}
impl<T: FftNum> ControlCache<T> {
pub fn new(max_outer_len: usize, direction: FftDirection) -> Self {
let max_inner_len = (max_outer_len * 2 - 1).checked_next_power_of_two().unwrap();
let max_power = max_inner_len.trailing_zeros() as usize;
Self {
fft_cache: (0..=max_power)
.map(|i| {
let len = 1 << i;
Arc::new(Radix4::new(len, direction)) as Arc<dyn Fft<_>>
})
.collect(),
}
}
pub fn plan_fft(&self, len: usize) -> Arc<dyn Fft<T>> {
let inner_fft_len = (len * 2 - 1).checked_next_power_of_two().unwrap();
let inner_fft_index = inner_fft_len.trailing_zeros() as usize;
let inner_fft = Arc::clone(&self.fft_cache[inner_fft_index]);
Arc::new(BluesteinsAlgorithm::new(len, inner_fft))
}
}
const TEST_MAX: usize = 1001;
/// Integration tests that verify our FFT output matches the direct Dft calculation
/// for random signals.
#[test]
fn test_planned_fft_forward_f32() {
let direction = FftDirection::Forward;
let cache: ControlCache<f32> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
println!("len: {len}");
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[test]
fn test_planned_fft_inverse_f32() {
let direction = FftDirection::Inverse;
let cache: ControlCache<f32> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[test]
fn test_planned_fft_forward_f64() {
let direction = FftDirection::Forward;
let cache: ControlCache<f64> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[test]
fn test_planned_fft_inverse_f64() {
let direction = FftDirection::Inverse;
let cache: ControlCache<f64> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[wasm_bindgen_test]
fn wasm_test_planned_fft_forward_f32() {
let direction = FftDirection::Forward;
let cache: ControlCache<f32> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
println!("len: {len}");
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[wasm_bindgen_test]
fn wasm_test_planned_fft_inverse_f32() {
let direction = FftDirection::Inverse;
let cache: ControlCache<f32> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[wasm_bindgen_test]
fn wasm_test_planned_fft_forward_f64() {
let direction = FftDirection::Forward;
let cache: ControlCache<f64> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
#[wasm_bindgen_test]
fn wasm_test_planned_fft_inverse_f64() {
let direction = FftDirection::Inverse;
let cache: ControlCache<f64> = ControlCache::new(TEST_MAX, direction);
for len in 1..TEST_MAX {
let control = cache.plan_fft(len);
assert_eq!(control.len(), len);
assert_eq!(control.fft_direction(), direction);
let signal = random_signal(len);
assert!(fft_matches_control(control, &signal), "length = {}", len);
}
}
|